
978-1-7281-1328-9/19/$31.00 ©2019 IEEE

BlockONS: Blockchain based Object Name Service

Wondeuk Yoon
Auto-ID Labs and School of Computing

KAIST
Daejeon, Korea

wdyoon@kaist.ac.kr

 Indal Choi
Department of Mobile Communications

LG Electronics
Seoul, Korea

indal.choi@lge.com

 Daeyoung Kim
Auto-ID Labs and School of Computing

KAIST
Daejeon, Korea

kimd@kaist.ac.kr

Abstract— Today, Internet of Things (IoT) technology is
applied to everywhere providing tremendous amounts of IoT
service such as home control, facility management, and social
public services. The GS1, a non-profit international standard
organization, standardized an Object Name Service (ONS)
which enables users to manage and discover services in the
midst of tremendous amounts of service. However, it has a
vulnerability in security and fault tolerance of providing
service, because the ONS operates based on the DNS protocol.
It is weak against data tampering attacks caused by DNS cache
poisoning, spoofing, and local DNS cracking. It has a weak
fault tolerance from problems with attack or malfunction. In
this paper, we propose a BlockONS, which is novel ONS based
on a blockchain. It provides a strength in data tampering
attacks allowing a fault tolerance for sustainable service. The
BlockONS consists of new service data modeling for an off-
chain scaling, data tampering validation method, and fault
tolerance mechanism. We designed the BlockONS into two
parts: a BlockONS Node part to valid data tampering, and a
BlockONS Agent part for scaling and fault tolerance. Finally,
we implement the BlockONS prototype using a Hyperledger
Sawtooth blockchain and intel i5 NUC. We proof the feasibility
of the BlockONS by comparing with performance of an
existing ONS.

Keywords—GS1, Object Name Service, Blockchain, Off-
chain Scaling, Data Security, Fault Tolerance.

I. INTRODUCTION
The Internet of Things (IoT) technology, introduced in

1999 by GS1’s partner Auto-ID Labs, enables various things
with sensors and communication modules to collect data and
provide services [1]. With the development of IoT, things
and things, things and people are connected to each other
through the Internet. Variety of IoT services, including home
control services, facility monitoring services, and public
services, are provided across the society. However, as the
number of IoTs and services increases, it becomes difficult
for service providers to manage them. It also becomes
complex for users to discover IoT services which they want.
Therefore, service management and discovery system is
indispensable to control and search services easily from
numerous IoTs and their associated services.

The GS1, non-profit international standard organization,
published the Object Name Service (ONS) standard [2] that
manages and discovers things and their associated services
using an standardized identifier of things called a GS1 code
[3]. A service provider can store ONS records, which are
service data of things, in distributed local ONSs using GS1
code as an identifier. A user can request service data of
things using GS1 code as an index. The DNS protocol [4]
can hierarchically discovers stored service data and return it
to the user.

However, because the ONS is designed based on the
DNS protocol, it has two disadvantages. First, it is vulnerable
to data tampering attacks such as DNS cache poisoning,
spoofing, and local DNS cracking. Second, it is hard to
provide sustainable service when a data tempering attack
occurs. Recently, the IoT services are applied in everywhere
such as a payment, an authentication, a healthcare and a
management. Therefore, in order to prevent serious problems
such as data spill, and economic/human loss due to
tampering attack and malfunction, the ONS has to valid
tampering of service data stored in the ONS. Also, it has to
provide fault tolerance for persistence service.

For several years, many works for the ONS have
proceeded. Evdokomov at el. suggested a MONS(Multipolar
ONS), which creates multiple replicated ONS Root
Nameservers by dividing the data held by an existing ONS
root [5]. Kin-Foo at el. proposed a DNS protocol based
decentralized federated ONS [6]. Schapranow at el. proposed
a P2P-based ONS that uses SSL protocols to prevent cache
poisoning, spoofing attacks during ONS Lookup process [7].
Fabian proposed a Distributed Hash Table (DHT) based P2P
ONS and provides access control using cryptographic hash
[8]. However, they insufficiently deal with fault tolerance of
the local ONS. Additionally, they only consider attacks
during the process of service querying. They did not consider
the data tampering attacks about service data already stored
in the local ONS.

In this paper, we propose a BlockONS, a blockchain
based Object Name Service that supports strength in data
tampering attacks and fault tolerance for sustainable service
with off-chain scaling. First, the BlockONS provides
tampering validation method. It generates unique hash of
original service data and stores it in the blockchain during
service data registration. In this way, the attacker cannot
easily tamper with the hash of the original service data stored
in blocks. The BlockONS can valid whether the tampering
attack occurred by comparing the hash stored in blocks with
the hash of the original service data. Second, the BlockONS
provides fault tolerance mechanism with off-chain scaling.
Storing all the original service data in the blockchain to valid
data tampering attacks degrades the performance of the
blockchain, and requires expensive system maintenance
costs. Therefore, we design a new service data modeling for
off-chain scaling to improve performance. In addition, we
propose a subscribe and synchronize mechanism to tolerate
fault caused by off-chain scaling.

The BlockONS is designed into two parts, a BlockONS
Node and a BlockONS Agent. The BlockONS Node is
implemented based on a Hyperledger Sawtooth blockchain.
It handles all transactions including registration, renewal,
deletion, and discovery of service data from the BlockONS
Agent. The BlockONS Agent stores original service data,

219

which is indexed by GS1 code, in a local database. It handles
all requests including management and discovery of service
data from service providers or users. It also subscribes and
synchronizes original service data among agents for
sustainable service. Finally, we deployed a BlockONS
prototype testbed using intel i5 NUCs. We proof the data
tampering validation method, and fault tolerance mechanism
with off-chain scaling. In addition, we show the feasibility of
performance by comparing to an existing ONS.

The remainder of this paper is organized as follows.
Section II describes the background knowledge of the ONS
and the Sawtooth blockchain. Section III describes the
architecture and component of the BlockONS. Section IV
describes the implementation of the BlockONS prototype
and testbed. The performance of the BlockONS is evaluated
and discussed in Section V. Finally we conclude this paper
and suggest future work in section VI.

II. BACKGROUND

A. Global Standard 1 Identification Keys (GS1 Code)
The GS1 provides 12 types of a GS1 code, an

international identification standard for improving the
efficiency and visibility of global production, logistics,
distribution and consumption networks. The GS1 code is
used to global unique identifier of things such as product,
location, asset, document, people and etc. Various services
can be associated with GS1 codes as shown in Table I.

B. Object Name Service (ONS)
The ONS is a name service that provides ways to

globally register and discover services associated with a GS1
Code assigned to objects. It also provides a dynamic service
definition model called ServiceType.xml for manging
service type. Current DNS based federated model with
multiple peer root ONS, that prevents censorship, access
block, and tampering by a single operator, has been adopted
as a standard version 2.0.1. In addition, a system for
registering and discovering services for various urban
resources in Smart City utilizing the ONS has been proposed
[9]. Fig. 1 shows the entire process of service discovery on
the ONS. (1,2) Scan and extract GS1 codes from the IoT
devices via barcode, QR code, datamatrix, bluetooth beacon,
and WiFi AP. (3,4) Convert the GS1 code to an Application
Unique String, and change it to a Fully Qualified Domain
Name (FQDN). (5,6) Query a Name Authority Pointer
(NAPTR) records using the FQDN. (7) Make service list
using returned NAPTR records and ServiceType.xmls. (8)
User can acess a service.

C. Hyperledger Sawtooth Blockchain
The Sawtooth is the one of Hyperledger projects

managed by the Linux Foundation. It focuses on modularity
and flexibility of smart contract called a Transaction Process
(TP) and consensus algorithms called POET (Proof-Elapsed-
Time). The TP provides flexibility to handle multiple
business logics simultaneously. The POET allows the size of
the network to scale. It can nearly support limitless nodes in
the network. In addition, the Sawtooth manages every
distributed ledger of TPs in a single Merkle-Radix tree called
a Global State [10]. The Global State provides high visibility
and robust read data access of records stored in a distributed
ledger.

TABLE I. VARIOUS SERVICES OF GS1 CODES
GS1 Code Various Services
GTIN (Global Trade Item
Number)

commercial product, Smart City service, and
etc.

GLN (Global Location
Number)

power plant, bus stop, park, city hall, library,
hospital and etc.

GRAI (Global Returnable
Asset Identifier) sharing bicycle, sharing car, and etc.
GIAI (Global Indivisual
Asset Identifier)

CCTV, bus, metro, street light, healthcare
device, and etc.

GSRN (Global Service
Relation Number)

doctor-patient, librarian-borrower, smartcity
administratorcitizen, and etc.

GDTI (Global Document
Type Identifier)

certifications, driving license, tax bill, official
document, and etc.

Fig. 1. Overview of GS1 ONS process.

Fig. 2. Blockchain based Object Name Service (BlockONS) Overview.

In order to manage and discovery tremendous amounts of
services, the system is required for high network scalability,
fast read data access, and flexible business logic
implementation. Comparing with other blockchains such as
Ethereum, and Hyperledger Fabic, since the Sawtooth
satisfies these requirements, it is used for the BlockONS.

III. BLOCKCHAIN BASED OBJECT NAME SERVICE
In the ONS, a service provider registers service data

associated by the GS1 code in to distributed local ONS. A
service searcher discovery service data by using the GS1
code as an index through DNS protocol. In addition, we
should handle the data tampering attacks and fault of service
to improve the ONS. Therefore, we propose methods for
applying blockchain technology to the ONS. The Fig. 2
shows an overview of the proposed BlockONS. It consists of
three main parts. The normal gray part shows how to store
the original service data from the service provider to the
blockchain. The light gray part shows how to valid data
tampering attack using a data stored in the blockchain. The
dark gray part shows how to share the service data among
the blockchain for sustainable service.

The blockchain protects data stored in the distributed
ledger from tampering attacks by sharing and synchronizing
same data with all nodes participating in the network. Thus,

220

if the original service data of all local ONSs stores in the
distributed ledger of the blockchain, it can be safe from data
tampering attacks. Also, since all blockchain nodes
synchronize the same service data, it can continuously
provide ONS service when a specific node dies.

However, if all original service data is stored in the
blockchain, the size of the blockchain increases
exponentially. This rises operation costs and degrades the
performance of the blockchain. In order to optimize the size
to the blockchain, the original service data must be refined
into small size and stored in the distributed ledger called an
on-chain. In addition, the original service data before
refinement must be stored in a database outside of the
blockchain called off-chain. This technical method is called
an off-chain scaling. For off-chain scaling, we propose a new
service data modeling to refine original service data into
small size. Also we propose data tampering validation
method that can valid the original service data stored in the
off-chain using the refined data stored in the on-chain.
Lastly, due to off-chain scaling, the original data is not
synchronized over all off-chain databases. Therefore, we
propose fault tolerance mechanism to provide sustainable
service even if the off-chain databased is broken down.

A. New Service Data Modeling for off-chain scaling
To realize off-chain scaling with data tampering

validation, we have to consider a data refinement method to
reduce the size of the blockchain, a new service data model
to handle the original and refined service data, and an role
based off-chain model to manage off-chain database
efficiently.

1) Data Refinement Method
In order to reduce the size of original service data

ensuring uniqueness of it, we leverage a hash algorithm. The
hash algorithm is used to map data of arbitray size onto data
of a fixed size. Considering a hash collision problem, we
refine the ONSRecord and SeriveType using the SHA-512
[11] as described in Algorithm 1. By using the SHA-512, we
reduce the size of the ONSRecord to 512 bits. Also, it is
possible to guarantee the uniqueness of the original service
data. Additionally, since the hash value must be changed
when the original service data is changed, it can be used to
valid the original service data.

Algorithm 1. Data Refinement Method

Input: off-chain’s public key, and ONSRecord / ServiceType,
Output: HashOR / HashST.
Initialize string D to concatenate input data.
if Input is ONSRecord then

for t=1, size of ONSRecord do
 D = D + ONSRecord.record(t)

end for
return HashOR = {

gs1Code := ONSRecord.gs1Code,
hash := sha512(D),
agentId := public key

}
else

for t=1, size of ServiceType do
 D = D + concat(ServiceType.fields(t), ServiceType.types(t))

end for
return HashST = {

serviceTypeId := ServiceType.SeriveTypeId,
hash := sha512(ServiceType),
agentId := public key

}
end if

2) New Service Data Model
The BlockONS has to fully support features of the ONS

standard with off-chain scaling and strength in data
tampering attacks. Thus, we redefine the ONS service data
models, which are the NAPTR record and the
ServiceType.xml as shown in Fig. 3.

For the original service data stored in off-chain database,
we design an ONSRecord and a ServiceType data model as
shown in Fig. 4. The new service data models basically
support compatibility with existing service data model.
Additionally, it is designed for flexible service data expand
by using key-value paired repeated model. Through key-
value paired repeated model, the BlockONS can support
broad scalability of the service data. For the refined service
data stored in the on-chain, we newly design an HashOR,
HashST, and AgentInfo as shown in Fig. 5. In order to
reduce the size of the blockchain, the HashOR/HashST are
designed to store a single string that is the the
ONSRecord/ServiceType hash value created by data
refinement method. The AgentInfo is a data model that stores
information of off-chain databases. It is designed for data
sharing among off-chains.

The on-chain and the off-chain are interconnected
through a common identifier. The ONSRecord and HashOR
use the GS1 code to guarantee global unique storage and
search. The ServiceType and HashST use the serviceTypeId
and agentid to guarantee global unique storage and search.

struct NAPTR record {
int order;
int preference;
string flags;
string servicetype;
string regularExpression;
string replacement;

}

struct ServiceType.xml {
anyURI serviceTypeIdentifier;
boolean abstract;
anyURI extends;
anyURI WSDL;
anyURI homepage;
Documentation[] documentation;
anyURI[] obsoletes;
anyURI[] obsoletedBy;

}

struct Documentation {
string languageCode;
anyURI location;
}

Fig. 3. NAPTR record, servicetype.xml data model.

struct RecordField {
string key;
string value;

}

struct Record {
string recordId;
repeated RecordField fields;
repeated RecordField types;

}

struct ONSRecord {
string gs1Code;
string agentId;
repeated Record records;

}

struct ServiceTypeField {
string key;
string value;

}

struct ServiceType {
string serviceTypeId;
repeated ServiceTypeField fields;
repeated ServiceTypeField types;
string agentId;

}

Fig. 4. ONSRecord, ServiceType data model.

struct HashOR {
string gs1Code;
string hash;
string agentId;

}

struct HashST {
string serviceTypeId;
string hash;
string agentId;

}

struct AgentInfo {
string agentName
string queryURL;
string syncURL;
string infoURL;
string agentId;

}

 Fig. 5. HashOR, HashST, AgentInfo data model.

221

TABLE II. ROLE BASED OFF-CHAIN MODEL.

Off-
chain
Type

Roles

Store
own data

Discover
own data

Subsidiary roles

Copy data Share data

Full Operate Operate Operate Operate

Light Operate Operate Operate -

Isolated Operate Operate - -

3) Role based Off-chain Model
We can reduce the size of the on-chain through the off-

chain scaling. However, if the off-chain stores all original
service data, it will have the same operational cost and
performance degradation problem. Therefore, we propose
role based off-chain model to manage off-chain database
efficiently.

The off-chain is a kind of distributed database managed
by the service provider, such as the local ONS. In the ONS,
the service provider only stores its own service data in the
local ONS. Subsidiary, local ONS can shares data with
another local ONS or copies data from another local ONS
according to special requests such as backup. Similarly, the
off-chain classifies into a Full, a Light, an Isolated types
according to the following rolls as shown in Table II. The
basic roles are following: (1) Store own data means that
service provider can store its own service data to the off-
chain, (2) Discover own data means service searcher can
discover the service data stored in the off-chain. Subsidiary
roles are following: (1) Copy data means off-chain copies all
service data from other off-chains, (2) Share data means off-
chain allows other off-chains to copy its own data.

 The full and light type off-chain can be set for backup of
services, which the basis for sustainable services. The light
type off-chain can be set if the contents of the service data
cannot be stored in other agents due to legal limitations. The
isolated type off-chain can be set if the service provider want
to operate the off-chain privately.

B. Service Data Validation Method
The BlockONS stores the original serive data in the off-

chain, and stores the SHA-512 hash value of it in the on-
chain as a result of the off-chain scaling. Since the SHA-512
hash value guarantees the uniqueness of the original service
data, by using this, we propose a service data validation
method in order to valid the tampering of the original service
data as . 1 described the Algorithm 2.

Fig. 6. Flow Chart of Service Data Synchronization among off-chains.

Fig. 7. Flow Chart of Sustainable Service of the BlockONS.

The service data validation method operates on the off-
chain. When the service searcher requests a service data, it
finds the original service data (D) stored in the off-chain
database, and generates the hash value by using the original
data (SHA512(D)). It also finds the hash value (H) stored in
the on-chain. Lastly, it return a result of subtracting H from
SHA512(D). Since the hash value is changed when the
original data is changed, it returns ‘0’ when the data is
normal and ‘not 0’ when the data tampering occurred.

C. Fault Tolerance Mechanism
As a result of the off-chain scaling, all service data is not

stored the off-chain, so service fault can occur when a
particular node dies. Therefore, we propose subscribe and
synchronize based fault tolerance mechanism to prevent
service failure.

We design a subscriber and a synchronizer to copy and
share the service data stored in the off-chain as shown in Fig.
6. The subscriber performs as the inspector for own off-chain
to copy the original service data from other off-chains. It is
executed by the service provider's backup request, the
service searcher’s discovery request, and the on-chain’s
updated event. The synchronizer performs as the messenger
for other off-chains to share their own service data.

The subscription and synchronization process for the
service data is following: (1) The service provider request the
update transaction to the off-chain. (2) Send the service data
to the on-chain. (3) Store hash value in the global state. (4)
Return a result. (5) Store the original service data in the local
database. (6) The updated event is broadcasted to the
subscriber of other off-chains. (6’) The backup and discovery
request executes the subscriber when the off-chain does not
have requested service data. (7) When the subscriber is
executed, it requests ‘copy data’ to the synchronizer that
stores the original service data. (8) The synchronizer finds
the original service data from the off-chain database. (9) Do
‘share data’ to send original data to the off-chain. (10) The

Algorithm 2. Service Data Validation Method

Input: ONSRecord / ServiceType stored in the off-chain database.
Output: 0 (no tampering), not 0 (tampering detected).
Initialize string D to concatenate input data.
Initialize string H to store hash value.
if Input is ONSRecord then

for t=1, size of ONSRecord do
 D = D + ONSRecord.Record(t)

end for
H = find HashOR using ONSRecord.gs1Code from the on-chain
return | SHA512(D) – H.hash |

else
for t=1, size of ServiceType do

 D = D + concat(ServiceType.fields(t), ServiceType.types(t))
end for
H = find HashOR using ServiceType.serviceTypeId from the on-chain
return | SHA512(D) – H.hash |

end if

222

subscriber receives the original service data and stores it in
the the off-chain database. Through this procedure, all full
and light type off-chain can backup up-to-date service data
that other off-chains have.

Fig. 7 shows the process of the sustainable service. (1)
The service searcher scans the GS1 code to query the service
data to the BlcokONS User which is client of the BlockONS.
(2) However, the server fails due to some reasons. (3) The
BlcokONS User requests and gets other full and light off-
chain information from on-chain’s AgentInfo. (4) Query the
service data on other off-chains that backup the original
service data from failed off-chain. (5) Also additional queries
can be possible, if target off-chain doesn’t have the service
data. Through this procedure, the service searcher can
experience sustainable service of the BlockONS.

D. BlockONS Architecture
The architecture of the BlockONS is shown in Fig. 8. It

consists of the BlockONS Server and the BlockONS Client.
The server has a BlockONS Node for the on-chain and a
BlockONS Agent for the off-chain. The node includes the TP
and global state leveraging the Sawtooth blockchain. The
global state manages agent information and hash value of the
service data. The TP includes an agent information handler
and a record/type hash value handler. The agent includes a
local database, a client, a synchronizer, and a subscriber. The
local database stores the original service data. The client
consists of a manage, discover record/type modules, and a
control synchronizer/subscriber module. The synchronizer
and subscriber consist of on/off module and a share/copy
module. The client consists of the service provider and
service searcher. The service provider creates new service
data, and requests a register/delete/update query to the agent.
The service searcher query the service data by using the GS1
code as an index.

1) BlockONS Node
The node plays a role of the on-chain part in the

BlockONS. It handles the AgentInfo, HashOR, and HashST
transactions, which are requested by the agent. It also stores
results of TPs in the global state.

When registration or update transaction of the AgentInfo
is requested, the agent information handler TP processes it
the following order: (1) Check the AgentName is already
exist in the global state. (2) If it does not exist, save the
AgentInfo and return success. (3) If it exists and sender’s
public key is same to the agentId, update the AgentInfo and
return success. (4) If it is different, return transaction error.

When registration or update transaction of the HashOR or
HashST is requested, the record/type hash handler TP
processes it the following order: (1) Check the HashOR or
HashST is already exist in the global state. (2) If it does not
exist, generate and store the hash value of the ONSRecord or
ServiceType, and return success. (3) If it exists and sender’s
public key is same to the agentId, update the hash data and
return success. (4) If it is different, return transaction error.
When deletion transaction of the HashOR or HashST is
requested, the record/type hash handler TP can only delete
hash value stored in the global state. It cannot delete
transactions stored in the blockchain. Therefore, if tracking
of deleted service data is needed, we can trace transactions
stored in the blockchain.

Internet of Things
Smart City Smart Fact ory Smart Grid Smart Building Smart Home

Service Points
Barcodes QR codes Data matrix BLE Beacon WiFi AP

Mapping with GS1 Code (GTIN, GLN, GRAI, GIAI, GSRN and etc.)

BlockONS User

Sawtooth NetworkBlockONS Server

BlockONS Agent

Camera Bluetooth

RFID

RFID/NFCWiFi

GS1 Code Extract

AUS Conversion
Country Language

Discover Query

BlockONS Node

Agent Info.Record/Type List

Se
rv

ic
e

Re
co

re
d/

Ty
pe

...

Local Database

Service Creation

Json Conversion
Record ServiceType

Reg. Del. Update Query

Global Stat e

Transaction Process
Agen t Info.

Handler
Record/Type
Hash Handler

Agent, Hashed Recode/Type List

ONS
Record

Service
Type

Manage
Record/Type

Manage
Agent

Agent Subscriber

Agent Synchronizer

Agent Client

Share
On/Off

Share
Record/Type

Copy
On/Off

Copy
Record/Type

Cl
ie

nt

Su
b.

Sy
nc

.
Cl

ie
nt

Sy
nc

.

...
Bl

oc
kO

NS
 N

od
e

G
lo

ba
l S

ta
te

Tx
 P

ro
ce

ss
Bl

oc
kO

N
S

No
de

G
lo

ba
l S

ta
te

Tx
 P

ro
ce

ss
Bl

oc
kO

N
S

No
de

G
lo

ba
l S

ta
te

Tx
 P

ro
ce

ss

DB
DB

Cl
ie

nt

DB

Cl
ie

nt
Sy

nc
.

DB

Cl
ie

nt

DB
...

Valid
Record/Type

Control
Sync. & Sub.

Service Provider Service Searcher

Fig. 8. Blockchain based Object Name Service (BlockONS) Architecture

2) BlockONS Agent
The agent plays a role of the off-chain part in the

BlockONS. It handles all requests of the service provider.
First, it handles the registration, deletion, and update requests
of the AgentInfo, ONSRecord, and ServiceType. Fig. 9
shows a flow chart of registration, deletion, and update
requests. (1) The service provider sends the AgentInfo,
ONSRecord or ServiceType to the agent through the REST
API. (2) The agent forwards received data to the node. (3-5)
Receive the result of the node. (6) If the node returns success,
dthe client stores original agent information or the service
data in the local database. If the node returns transaction
error, the client ignore requests.

Second, it handles discover requests of the service
searcher. Fig. 10 shows a flow chart of discovery request. (1)
The service searcher sends the GS1 code to the agent through
the REST API. (2) The client requests transaction of the
HashOR/HashST to the node. (3-4) Receive the hash value
of the service data. (5) Find the original service data using
the GS1Code/ServiceTypeId from the local database. (5’) If
service data does not exist in the local database, the
subscriber requests copy to the synchronizer that has the
service data. After sharing the service data, the subscriber
store it in the local database. (6) Validate the service data by
using the hash value of the HashOR/HashST. (7) Return
service data if it is valid.

Depending on roles of the agent, the agent is classified
into three types. The client of the agent manages the store
and discover roles as basic functions. The subscriber
manages the copy role to replicate the original data from
other agents. The synchronizer manages the share role to
allow the data copy to other agents. As shown in Table III,
agent type is determined by module configuration.

223

Fig. 9. Flow Chart of Service Registration, Deletion, and Update Request.

Fig. 10. Flow Chart of Service Discovery Request.

TABLE III. BLOCKONS AGENT TYPES BY RUNNING COMPONENTS.

Agent
Type Client Synchronizer Subscriber

Full Run Run Run

Light Run Run -

Isolated Run - -

A Full agent is composed of all three components. A
Light agent is composed of the client and synchronizer. An
Isolated agent is composed of the client only.

The Full Agent runs all components to handle all requests
from the service provider and searcher. It registers and
discovers the ONSRecord and ServiceType stored in the
local database. It also copies service data from other agents,
and stores them in the local database, when the service
searcher discovers service data stored in other agents. It
allows other agents to share their own service data stored in
the local database to other agents’ local database.

The Light Agent performs caching by copying service
data from other agents. However, it forbids other agents to
share their own service data stored in the local database. The
Light Agent can be configured if the contents of service data
cannot be stored in other agents due to legal limitations.

The Isolated Agent does not copy and the service data of
the other agents. It also forbid the other agents to share its
own service data. Their own service data is only stored in
their local database. If it is difficult to copy service data and
the user want to operate the agent privately, the user can
configure the Isolate Agent.

IV. PROTOTYPE TESTBED OF THE BLOCKONS

Fig. 11. BlockONS prototype implementation and testbed environment.

 Fig. 11 shows the implementation of the BlockONS
prototype, and a testbed environment. The BlockONS
prototype has the BlockONS User and BlockONS server.
The user consists of a register and a discovery module. The
server consists of one agent and one node. To evaluate the
BlockONS in the real network and device environment, we
deploy one BlockONS User and five BlockONS Servers
using six intel NUC5i5ryh (SSD 256GB, DDR3 16GB) and
iptime a6004ns AP(802.11ac, 700 Mbps).

The BlockONS User uses ‘siege [12]’ to evaluate the
performance of registration and discovery requests.
BlockONS Servers are connected with each other through
700 Mbps wireless network. We use the Sawtooth v1.0.5 and
Golang to implement the node and TPs. The local database,
client, subscriber, and synchronizer of the agent are
implemented by using MongoDB v4.0.2 and Golang. Lastly,
the testbed includes full, light, and isolated agents for
performance evaluation.

V. EVALUATION AND DISCUSSION
To evaluate the performance of the BlockONS, we

conducted Transaction Per Seconds (TPS) and a Mean Test
Time (MTT) experiment about registration and discovery
requests of GS1 codes, ONS records, and ServiceTypes. For
realistic load testing, we configured that 592 virtual users
sent registration and discovery requests to BlockONS Server
every one second.

A. GS1 Code, ONS record, and ServiceType Register
To evaluate registration performance of the BlockONS,

we set 40,000 GS1 codes (, 100,000 ONS records, and
40,000 service types. We measured the performance of TPS
and MTT by increasing the number of BlockONS nodes
from one to five.

224

Fig. 14 (a), (b) show the performance results of
registration transactions with the number of nodes. Average
TPS results of registration transaction are 30.472 tps (GS1
Codes), 26.895 tps (ONS Records), and 20.782 tps
(ServiceTypes). In addtion, average MTT results of
registration transaction are 38 ms (GS1 Codes), 45 ms (ONS
Records), and 57 ms (ServiceTypes).

The results show that the number of nodes does not
significantly affect performance. This is because the
transaction performance of the block chain is determined by
the consensus algorithm rather than the number of nodes. We
leverage the PoET consensus algorithm to implement the
BlockONS. Since it likely selects a node as a block minor
that can generate a block with the most efficient elapsed
time. So performance of TPS and MTT is determined by the
hardware resource power, not the number of nodes.

In addition, the results show that performance decreases
as the size of the data to be registered increases. In
evaluation, since we use 1,202 bytes-sized ServiceType, 258
bytes-sized ONS record, 13 bytes-sized GS1 code, the
BlockONS performs in the order GS1 code, ONS record, and
ServiceType. Because the larger the size of the data
consumes the higher hash generation time.

Thus, to order to improve the performance of registration
transactions, we can simply substitute high-performance
device for the BlockONS node in the testbed. In a different
way, we can survey hash algorithms that generate a hash
value without affecting the size of the data.

B. ONS record, and ServiceType Discovery
To evaluate discovery performance of the BlockONS, we

used the same data set as the registration performance test.
We defined three different scenarios. First, we requests
discovery to the isolated agent. Second, we requests
discovery to the full & light agent. Third, we requests

discovery to the full & light agent without data tampering
validation. In ONS record discovery evaluation, we
measured performance by increasing the size of the target
ONS record, from 6 to 21 records. For the service type
performance evaluation, we used 1,202 bytes-sized
ServiceType data.

Fig. 14 (c), (d) show ONS record discovery results of
Isolated, Full & Light and Full & Light without validation
with the number of records. Average TPS results of
discovery transaction are 174.982 tps (Isolated), 246.380 tps
(Full & Light), 582.112 tps (Full & Light without
validation), and 215.615 tps (ONS v2.0.1). In addtion,
average MTT results of registration transaction are 20 ms
(Isolated), 16 ms (Full & Light), 5 ms (Full & Light without
validation), and 23 ms (ONS v2.0.1).

The results show that the smaller size of ONS record has
the higher discovery performance. Isolated agent shows
similar performance then the result of existing ONS 2.0.1.
Full & Light agent shows better performance than the result
of the existing ONS 2.0.1. The reason for this results is that
the BlockONS changes existing federated ONS query to
on/off-chain based direct query through the off-chain scaling.
Additionally, if we can omit the service data validation
sequence, Full & Light agent without validation shows the
best performance then the others.

 Fig. 14 (e), (f) show ServiceType discovery results.
Average TPS results of discovery transaction are 171.950 tps
(Isolated), 254.730 tps (Full & Light), and 823.860 tps (Full
& Light without validation). In addtion, average MTT results
of registration transaction are 21 ms (Isolated), 15 ms (Full &
Light), and 2 ms (Full & Light without validation). For the
same reason as ONS record discovery results, Full & Light
agent without validation shows the best performance.

Thus, in order to improve the performance of discovery
transactions, we can move the data validation process to the

Fig. 12. Performance evaluation of the BlockONS. (a) Register TPS of blockONS by nodes, (b) Register MTT of blockONS by nodes, (c) Discovery TPS
of ONS record by records, (d) Discovery MTT of ONS record by records, (e) Discovery TPS of serviceType, (f) Discovery MTT of serviceType.

 (a) (c) (e)

(b) (d) (f)

225

client-side for saving time of hash value comparison. In a
different way, since the result of Full & Light better then
Isolated’s one, we can design incentive economy model for
motivating people to operate more full and light agents.

VI. CONCLUSION AND FUTURE WORK
We use the distributed ledger technology of the

blockchain to provide efficient storage and persistent service
discovery ensuring the service data tampering validation. In
order to realize the blockchain based ONS called the
BlockONS, we design the off-chain scaling scheme
including data refinement method, new service data model,
and role based off-chain model to manage the service data
efficiently. We design the service data validation method
using the characteristics of hash algorithm. We design fault
tolerance method in the off-chain for sustainable service by
subscribing and synchronizing the service data among off-
chains. We also implement the BlockONS, and evaluate TPS
and MTT performances in the real network and device
environment. Average registration result is 26.050 tps, and
47 ms, and average discovery result is average 375.669 tps,
and 13 ms, while existing ONS has 215.615 tps and 23 ms
discovery performance. Finaaly, we confirm that the
proposed BlockONS show better performance in discovery
evaluation then existing ONS ensuring data tampering
validation and sustainable service.

As the future works, we will consider an access control
for the BlockONS. Also we will design incentive economy
for the BlockONS eco-system to motivate the user to operate
more full and light agents.

ACKNOWLEDGMENT
This work is supported by Smart City R&D project of the

Korea Agency for Infrastructure Technology
Advancement(KAIA) grant funded by the Ministry of Land,
Infrastructure and Transport(MOLIT), Ministry of Science
and ICT(MSIT) (Grant 18NSPS-B149386-01), and

International Research & Development Program of the
National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT & Future Planning of Korea
(2016K1A3A7A03952054).

REFERENCES
[1] K. Ashton, “That ’internet of things’ thing in the real world, things

matter more than ideas”, RFID Journal, June 2009.
[2] GS1 Object Name Service (ONS) 2.0.1, “GS1 object name service

version 2.0.1”, January 2013.
[3] GS1 ID Keys, “https://www.gs1.org/standards/id-keys”, Retrieved on

Nov. 2018.
[4] MEALLING, M., and DANIEL, R., "RFC 2915: The naming

authority pointer (naptr) dns resource record.", Sep. 2000.
[5] Evdokimov, Sergei, Benjamin Fabian, and Oliver Günther.

"Multipolarity for the object naming service." In The Internet of
Things, Springer, Berlin, Heidelberg, 2008. pp. 1-18.

[6] Kin-Foo, Sandoche Balakrichenan Antonio, and Mohsen Souissi.
"Qualitative Evaluation of a Proposed Federated Object Naming
Service Architecture." In IEEE International Conferences on Internet
of Things, and Cyber, Physical and Social Computing. 2011.

[7] Schapranow, Matthieu-P., Alexander Zeier, Felix Leupold, and
Tobias Schubotz. "Securing EPCglobal object name service-Privacy
enhancements for anti-counterfeiting." In 2011 Second International
Conference on Intelligent Systems, Modelling and Simulation, 2011.
pp. 332-337.

[8] Fabian, Benjamin. "Implementing secure p2p-ons." In
Communications, 2009. ICC'09. IEEE International Conference on,
2009. pp. 1-5.

[9] Yoon W, Lee Y, Chae H, Seo S, Heo S, Lee N, Kwon K, Kim D.
HERMES: GS1-based Smart City Service Intercommunity. In2018
IEEE International Smart Cities Conference (ISC2) 2018 Sep 16 (pp.
1-8). IEEE.

[10] Hyperledger Sawtooth Architecture Guide, "Global State",
https://sawtooth.hyperledger.org/docs/core/nightly/master/architecture
/global_state.html, Retrieved on Nov. 2018

[11] FIPS P. 180-4. Secure hash standard (SHS),” March. 2012.
[12] Joe Dog Software, "Siege: http load testing and benchmarking

utility", https://www.joedog.org/siege-home/, Retrieved on Nov.
2018.

226

