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Abstract—The adoption of smart grid technologies will allow
for more distributed generation of energy and for residential
and commercial users of electricity to make intelligent decisions
about energy usage. In previous research by Livengood and
Larsen [1], a stochastic dynamic programming problem is
formulated for a micro-scale smart grid system. A mathematical
model of energy usage is developed where the goal is to
optimize a finite horizon cost function reflecting both the cost of
electricity and comfort/lifestyle. This paper extends this work by
assuming key models and forecasts are unknown and implicitly
learned via the softmax algorithm with neighborhood updating.
The algorithm implements approximate dynamic programming
with a goal of reducing dependancies on models and forecasting
while achieving good performance. Simulations are conducted
using the softmax algorithm showing that the solution ap-
proaches the optimal dynamic programming algorithm solution.

I. INTRODUCTION

Implementation of the Smart Grid will change the way
we use and generate electricity. Some features include vari-
able energy costs (depending on time of day), distributed
generation, and end users making decisions about how they
control energy usage. Smart grid systems may be classified
as those which operate at the macro (national, state, regional)
level, and those which operate at the micro (home, business,
and neighborhood) level. At the macro-scale the smart grid
system is concerned with utility security and reliability and
two-way integration of renewable resources. At the micro-
scale a smart grid system may be employed to effectively
manage a home or business owner’s utility load in a manner
which allows him or her to save money by making the most
of the resources available at any given time. Micro-scale
smart grid systems will play a critical role in managing costs
associated with the variable utility pricing models foreseen in
the future. Smart grid systems (and variable pricing models)
aim to ‘shave the peaks, and fill in the valleys’ [1] of
the demand on electricity load. The role of the system is
to make intelligent decisions based on the utility pricing
scheme, availability of local resources (wind, solar, and
battery power), and local demand for electricity load. The
discussion and results presented here will be concerned with
the development of a micro-scale smart grid optimization
system, herein referred to as the smart system.

The remainder of this work includes a discussion of the
modeling framework developed by Livengood and Larsen
[1], the fundamentals of optimal decision making through dy-
namic programming and their results, and finally discussion
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and results of a more generalized solution to the optimization
problem.

II. SMART SYSTEM OPTIMIZATION

Decisions must have an outcome, and that outcome must
have an associated cost. For the smart system the deci-
sions revolve around efficient delegation of electrical load
resources. Some examples of load delegation are storing
electricity from the utility in the early morning hours to
avoid peak charges later in the day, and turning down the air
heating/cooling systems when utility prices are high. Costs
for these decisions must be considered as both the current
cost associated with, say, pulling electricity from the utility to
store in the battery, as well as the future (potentially negative)
costs associated with being able to use this resource at a
later time. Optimal decision making becomes a balancing
act between current and future costs. For the smart system
considered here, future costs are heavily dependent on a
number of variables, many of which are random in nature.
The relationships between decisions and costs are critical
to optimal decision making, and must be estimated through
models or experience.

A. The Energy Box Model

In April of 2009, Livengood and Larson released their
paper The Energy Box: Locally Automated Optimal Control
of Residential Electricity Usage [1]. The paper outlines
the dynamics of a variable pricing utility model, and the
opportunity for locally controlled utility load management.
A key aspect of the paper is the development of a state space
model in which various utility management schemes may be
tested. The model contains aspects foreseen in the future of
utility management. These include renewable sources, such
as wind power, and battery storage, which might be found
in an electric vehicle, as well as variable utility pricing.

The smart system has several options for decreasing the
costs associated with utility use including load scheduling,
and load shedding. An example of load scheduling may
include waiting to start the clothes dryer, or dishwasher. An
example of load shedding may include turning off electric
water heaters, and reducing cooling temperatures in refriger-
ators and air conditioning systems. Livengood and Larsen’s
system model focuses on load shedding associated with an
air cooling system in the home. Decision making revolves
around the air conditioner set point, and buying or selling of
electricity from or to the grid via battery storage. The model
provides several variables describing the state of the system
which are used to make decisions. These include the time of
day, indoor temperature, outdoor temperature, uncontrolled
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utility load in the home, utility price, wind speed (which
determines wind power available), and battery charge level
(see figure 1).

Fig. 1. The smart system attempts to optimize comfort and dollar costs
associated with thermostat setting. After observing the indoor and outdoor
temperatures, available wind power, time of day, uncontrolled load in the
home or business, utility price, and battery level, the system outputs a
directive to charge or discharge the battery, and set the thermostat.

The paper proposes a stochastic dynamic programming
optimization solution for minimizing both dollar and comfort
costs associated with utility use and conservation. As shown
in figure 2 the stochastic dynamic programming optimization
routine takes in a state forecast for the current episode
and generates optimal decisions. These decisions in turn
affect the costs and state transitions. Cost and state transition
models are updated, and new forecasts feed the next round
of decision making.

Fig. 2. In [1] decisions are optimized with stochastic dynamic programming
given a forecast for the upcoming episode (t = 1 to t = N − 1). These
decisions then affect the state transitions and associated costs. The next stage
of states updates cost and transition models for forecasting, and the process
repeats for each stage.

Forecasts are required for the outdoor temperature, util-
ity price, wind speed, and uncontrolled load. Models are
required for indoor temperature, battery level, and cost.

B. Stochastic Dynamic Programming

Dynamic programming is a method for system optimiza-
tion performed by breaking the problem down into small,
simple steps [4]. The fundamentals of dynamic programming
revolve around six concepts: decisions, states, stages, the
cost function, state transition rules, and decision rules. The
decisions are made according to the state at each stage of
the process. States evolve according to state transition rules
which are a function of the state and the decision at the
previous stage. The state evolution will dictate the cost as

evaluated by the cost function. Decision rules are formulated
for each state in order to minimize the cost function which
is a function of current and future stage costs. Solutions to
the dynamic programming problem may be found using the
principle of optimality as developed by Richard Bellman [4].
For every feasible state a decision rule must be established
which appropriately balances current and future costs. When
the problem has a finite horizon (or final stage) it is most
convenient to start from the final stage and work backwards,
tallying future costs and optimal decisions as the problem
grows.

Fig. 3. The principle of optimality states that we may work backwards
through stages in a dynamic programming problem in order to efficiently
calculate future costs and optimal decisions for every state and stage.
Potential decisions are shown in black, while calculated optimal decisions
are shown in red. In the lower panel decisions are considered for state bN−2

given the optimal decisions determined in the upper panel.

Figure 3 depicts the calculation of optimal decisions and
associated costs for an N stage horizon using the principle
of optimality. In the top panel of figure 3 the last decision
stage is considered which requires no knowledge of future
costs. In the lower panel of figure 3 decisions are consid-
ered given current and future expected costs resulting from
optimization at stage N − 1. Given a state and a decision,
the state transition rules dictate the state evolution. The state
transitions in figure 3 may be deterministic or stochastic. In
stochastic problems state transitions are probabilistic. Thus,
when calculating future costs for the system one must take
the expected value of multiple costs in order to account for
probabilistic state transitions.

U∗
t = arg min

Ut

E [J (Xt, Ut) + J∗ (Xt+1)] (1)

Xt+1 = PUt (Xt) (2)

Eqs. (1) - (2) provide a generalized mathematical expres-
sion for optimal decision making where U∗

t is the optimal
decision at stage t. Here Xt dontes the state at stage t, Ut is
a potential decision at stage t, J (·) is the current stage cost
and J∗ (·) is the future stage cost under optimal decision
making, considering state transition probabilities given by
PUt

(·). For a stochastic state transition the future stage cost



will be the sum of optimal stage costs weighted by the state
transition probabilities.

C. Smart System State and Cost Models

For simulation purposes, state models are established to
provide forecast input, and cost output to the optimization
scheme. Each of the state models are presented in the fol-
lowing section. Given that optimal decision making implies
determining an appropriate action for every state, care must
be taken to reduce the total number of states available at any
given stage. Given a forecast, many states are deterministic
± a single discrete noise term as in [1], reducing the number
of possible values for the given state variable at the stage to
3. Even with this consideration there are 24 different time
states, 15 states associated with indoor temperatures (integers
between 68 and 82), 3 states for outdoor temperature, 3
states for the uncontrolled load, 3 states for the grid price,
16 states for the wind speed, and 5 states for the battery
level. In total this generates 777,600 states. For every state
there are 7 temperature set-point options, and 2 or 3 battery
(dis)charging options. In order to accurately implement a
stochastic dynamic programming solution 14,152,320 costs
must be calculated. This is a very large number, and under-
lines a significant issue even given the severe discretization
of the state models.

It should be noted here that this work is focused on
the optimization of a smart system, not on the real-world
accuracy of the particular underlying state and cost models.
While state and cost models are constructed in an attempt
to mimic real-world scenarios, it is anticipated that true
realizations will vary extensively in different environments.
The solution methods presented here are intended to work
on a wide range of state and cost models. Specific attention
is not given to the units of the different state variables.

1) Outdoor Temperature: The outdoor temperature is
modeled as a sinusoid with additive noise. Figure 4 depicts
a realization of the outdoor temperature model for one 24
hour episode.

forecast = cos

(
(t− shift)π

12

)

actual =

 forecast− ∆OT w.p.0.2
forecast w.p.0.6
forecast+ ∆OT w.p.0.2

∆OT = 1

2) Indoor Temperature: The models for the indoor tem-
perature are from [1] and [5]. The indoor temperature is de-
terministic given outdoor temperature, and set-point. Notice
that the outdoor temperature and set-point also determine the
load of the air conditioning unit which is capable of heating
and cooling to meet the set-point. Figure 5 depicts the
evolution of the indoor temperature given no air conditioning
input. The indoor temperature basically lags that of the
outdoor temperature owing to inefficiencies in insulation.
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Fig. 4. Outdoor temperature model. Here shift = 2.

newTemp =ε× oldTemp

+ (1 − ε) (outdoorTemp− γ ×ACLoad)

ACLoad =

∣∣∣∣∣outdoorTemp−
setTemp−ε×oldTemp

1−ε
γ

∣∣∣∣∣
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Fig. 5. Indoor temperature is determined by the outdoor temperature and
the set-point. Here ε = 0.5 and γ = 0.2

3) Uncontrolled Load: The uncontrolled load is modeled
as a piece-wise sinusoid with multiplicative noise. This
model is intended to reflect the user demand for electricity
load throughout the waking hours, while maintaining a low
background load during sleep. Figure 6 depicts a realization
of the uncontrolled load model for a 24 hour episode.



forecast =
low t < start

sin
(

(t−start)π
end−start

)
(high− low) + low otherwise

low t > end

actual =

 forecast (1 − ∆UL) w.p.0.2
forecast w.p.0.6
forecast (1 + ∆UL) w.p.0.2

∆UL = 0.05
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Fig. 6. The uncontrolled load is modeled as piece-wise sinusoidal. Here
start = 6, end = 18 (6 a.m. to 6 p.m.) low = 5, and high = 75.

4) Utility Price: Similarly to the uncontrolled load model
the utility pricing model is piecewise sinusoidal with multi-
plicative noise. Figure 7 depicts a realization of the utility
pricing model through a 24 hour episode.

forecast =
low t < start

sin
(

(t−start)π
end−start

)
(high− low) + low otherwise

low t > end

actual =

 forecast (1 − ∆UP ) w.p.0.2
forecast w.p.0.6
forecast (1 + ∆UP ) w.p.0.2

∆UP = 0.05

5) Wind Speed/Power: The wind speed is modeled as a 1-
step Markov process. Figure 8 depicts a 24 hour realization
of the wind speed. A simplified linear model for wind power
from wind speed is assumed. Wind speed is limited to be no
less than 0 and no greater than 30.
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Fig. 7. The utility pricing model is piece-wise sinusoidal with multiplicative
noise. Here dayStart = 6, dayEnd = 18, (6 a.m. to 6 p.m.), low = 0.2,
and high = 1.

forecast = priorV alue

actual =

 forecast− ∆W w.p.0.2
forecast w.p.0.6
forecast+ ∆W w.p.0.2

∆W = 2

windPower = α× windSpeed
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Fig. 8. Wind speed is modeled as a 1-step Markov process. Wind power
is linearly proportional to wind speed.

6) Battery: The battery state is determined by user input
up to capacity limits. The battery level is allowed to change
by -25 (discharge), 0 (no action), or 25 (charge) within a
given stage. The minimum capacity is 0 and the maximum
capacity is 100.

7) Cost: The total cost function is given by eq. (5). The
total cost is a weighted combination of the dollar and comfort
costs given in eqs. (3) and (4) respectively. This weighting



will depend on user preference. Here the comfort point is the
optimal indoor temperature determined by the user.

dollarCost =
N∑
i

netLoadi × gridPricei (3)

netLoadi =ACLoadi + unctrlLoadi + dBatti

− windPoweri

comfortCost =
N∑
i

(comfortPoint− indoorTempi)
2

(4)
totalCost =0.6 (dollarCost) + 0.4 (comfortCost)

(5)

D. Stochastic Dynamic Programming Results

In order to implement the stochastic dynamic program-
ming algorithm a finite horizon was assumed. The most
natural episode was a 24 hour period starting at midnight
and continuing until midnight of the following day with
a stage decision every hour on the hour. This allowed
optimal decision making for every state starting from the
final decision stage (11p.m.), continuing backwards until the
initial stage (12a.m.). Costs and state transitions following
the models described in the previous section provided a
means for calculating optimal decisions for every state at
every stage using stochastic dynamic programming. Figure
9 shows the evolution of indoor and outdoor state variables
with respect to the set-point and comfort point given optimal
decision making.
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Fig. 9. Evolution of indoor and outdoor temperatures given optimal decision
making dictated by stochastic dynamic programming

Figure 9 illustrates some of the interesting characteristics
of optimal decision making in a stochastic environment.
The algorithm chooses to reduce the set-point in the early
morning hours to allow for some discomfort in balance of
dollar cost. This effect is considerably more pronounced
during peak hours when demand for load, utility price,

and outdoor temperatures are high. Figure 10 considers the
individual load components, and sheds some insight into the
battery charging/discharging decision process. Battery charg-
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Fig. 10. Utility load profile for each modeled component. Note that in this
instance the net energy consumed is negative due to the availability of wind
power.

ing occurs in the early morning hours while electricity is
cheap and demand is low. The battery discharges during peak
hours to meet high prices and demand for load. Figure 11
outlines the cost components associated with this example.
Here comfort cost is maintained near zero while dollar costs
vary in proportion to load demand and utility costs.
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Fig. 11. Cost profile components. Comfort cost is associated with devi-
ations in indoor temperature, dollar costs are associated with utility being
used/supplied and the utility price. The weighted cost is the cost function
used by the stochastic dynamic programming algorithm in determining
optimal decisions.

E. Stochastic Dynamic Programming Discussion

While the stochastic dynamic programming solution found
here seems to work well enough for the problem that
was constructed, the solution was still very computationally



intensive and relied upon discretized states with known
transition probabilities. In a real world environment with
unknown state transition models and cost functions, optimal
decision making in this fashion is unlikely. Additionally,
state variables will not be discrete values from episode to
episode, and a complete solution would require optimal
decision making solutions for an infinite number of possible
states. In the next section an adaptive algorithm capable of
dealing with some of the real world issues addressed here is
discussed.

III. A REINFORCEMENT LEARNING APPROACH

A more generalized solution to optimizing the smart
system decision making process would do without some
of the assumptions made under the stochastic dynamic
programming environment. Namely, it would be nice to
make intelligent decisions from data and experience gathered
without knowing much about the system state transition
probability rules or costs, and without forecasting future
state values. Without knowledge of these components there
is no way to immediately make optimal decisions. In this
type of environment optimal decisions must be learned from
experience.

From a high level the smart system optimization problem
is one of mapping decisions to costs, and choosing those
decisions which minimize costs to be optimal. Viewing the
problem in this way greatly simplifies the system architec-
ture, and refocuses the optimization problem on learning
which decisions, made from a particular state, minimize cost.
Figure 12 outlines the basic system flow, where decisions are
based on past costs.

Fig. 12. In the simplified reinforcement learning optimization architecture
decisions are based on past experience alone.

A. Adapted Softmax with Neighborhood Update Model

The softmax decision algorithm is based on choosing
actions via a probability distribution [3]. Positive outcome
(low cost) decisions increase the probability of choosing the
same action in the future while negative outcome (high cost)
decisions decrease the probability of choosing an action.
Over time, the probability distributions should heavily favor
optimal decisions. The softmax algorithm has been adapted
here to reduce the number of probabilities that need to
be calculated. Instead of learning roughly 21 probabilities

associated with each decision at each state, we can parame-
terize the distributions. Using Gaussian distributions reduces
the problem to that of determining an optimal mean and
variance over the decision space for each state. When a
state/action combination is found which reduces total cost,
the mean of the decision probability distribution for that
state is updated. After being randomly initialized the mean
is updated according to a learning rate every time a decision
provides reduced costs. The deviation of the distribution is
then updated in proportion to the size of the mean update. If
the new, optimal mean of the decision distribution was close
to the old one, the variance may be reduced. If the mean
update was large the variance is maintained or increased.
This follows from an exploration-exploitation optimization
scheme in which early exploration yields erratic results and
late exploitation takes advantage of learned rules for cost
minimization.

Given the update rules described above we may learn at
most once per stage. With approximately 800,000 states that
must be learned, this process will take a very long time.
In the smart system optimization problem we expect the
state/decision costs to be relatively smooth. For example, the
cost of placing the temperature set-point at 72 vs. 73 is likely
very similar. This implies that we can share decision and cost
information amongst states. Under the softmax framework
we can now assume that the probability distribution param-
eters for neighboring states should be similar. Thus, while
updating the parameter information for the current state,
we can update the neighbor states according to a reduced
weighting coefficient. Similarly, neighbor best costs may be
reduced given significant discrepancies. For example, best
cost estimates are initialized to infinity. This means that the
first time this state is encountered the probability distribution
governing the decisions will be updated regardless of the
cost result. This type of false update may be avoided by
initializing unobserved states to values higher, but on the
same order as neighbor states. Currently, neighbor costs are
updated as 1.5x the base cost.

B. Adapted Softmax with Neighborhood Update Results

The method of adapted softmax with neighborhood up-
dates was applied over 100 days (episodes) of continuous
running with no prior knowledge of state transitions or
cost structure. The softmax distributions for all states were
initialized with randomly distributed means and deviations
of 1 for the temperature set-point and 15 for the battery
charge/discharge. The neighbor update weights were [0.7 0.3
0.2] (update two neighbors away), for immediately adjacent
neighbors. The product of neighbor weights was used for
non-adjacent neighbors.

Figure 13 shows the temperature results after running the
algorithm for 100 days after random initialization. While the
algorithm is not producing the sophisticated results observed
in the stochastic dynamic programming example, it is able
to maintain the temperature around the comfort point even
though it has no prior knowledge of its existence. Figure
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Fig. 13. Temperature profiles achieved given the softmax-neighbor update
method. Notice how the indoor temperature hovers around the comfort point.
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Fig. 14. Individual load components using the softmax-neighborhood
update method. Notice that battery charging occurs in the early morning
hours, and discharging occurs during peak pricing and loads.
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Fig. 15. Cost component example for the softmax neighbor update method.
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Fig. 16. Total cost by stage. Red depicts the average cost of the first 10
days, blue depicts the average cost of the final 10 days (91-100), and black
is the optimal cost as determined by stochastic dynamic programming.

14 shows the individual load components for this example.
While, here again, the decisions to charge/discharge the
battery are not as sophisticated as those observed under
the stochastic dynamic programming scheme, in general the
battery charges in the early morning hours when costs are
low, and discharges at peak hours when costs and demand
are high. Figure 15 depicts the cost function for the example
considered here.

Figure 16 displays the stage costs for the softmax-
neighborhood update method with respect to the stochastic
dynamic programming costs over a 100 day training period.
During the first 10 days the softmax distributions are gener-
ally randomized, but significant improvement is observed by
the final 10 days. While the stochastic dynamic programming
solution does significantly better still, it should be noted that
any type of softmax approach will suffer with respect to hard
optimal decision making.

IV. CONCLUSION/FUTURE WORK

Traditional stochastic dynamic programming is difficult
to implement for real smart systems given the lack of
state variable models and infinite state space realizations.
Even severe discretization of the state space results in over
14 million state/action combinations. By combining ideas
from softmax decision making routines as well as neighbor
updates an algorithm may be implemented which does not
require state forecasts or state variable and cost models.
Optimal decisions may be asymptotically learned for any
given system. This avoids the out of the box tuning required
for implementing a smart system in a new environment.
The algorithm presented here is also able to operate in non-
stationary environments in which the state variable models,
transition rules, and cost functions are subject to change.

Future work should be focused on three areas, updating
the transition probabilities to allow policy iteration methods,
moving to a continuous framework by possibly implementing



competitive learning schemes, and investigating the ability of
forecasting combined with non-stochastic dynamic program-
ming to provide a solution set. The simplest move forward
is to update the existing algorithm to track the transition
probabilities explicitly. Developing a transition probability
model will allow for the development of a policy itera-
tion framework, allowing the algorithm to utilize additional
knowledge about which decisions are causing increased cost
scenarios within an episode. A move to a continuous state-
space scheme may be implemented by considering a com-
petitive learning framework in which states are discretized
to a node on an existing mesh of possible states. Each
node on the mesh will contain information about the costs
and optimal decisions associated with each state, and may
adapt as in a self organizing map routine, to better account
for often encountered states as models are learned. Non-
stochastic dynamic programming may be used when accurate
values of the forecasted states are available. The method
boils down to a simple linear programming routine which
may be run quickly to evaluate many different forecasts,
and associated optimal decisions. These solution sets may
provide valuable insights into the cost/decision landscape for
a given state and allow further generalization. Additionally,
updates to the Energy Box model [1] which include load
scheduling scenarios instead of only load shedding will
provide additional insight into the smart system problem.
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