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Abstract—Existing generic benchmarks for accelerators (e.g.
Parboil and Rodinia) have focused on high performance comput-
ing (HPC) applications which have limited control flows and data
irregularity. Previous available graph analytics benchmark suites
include straightforward implemented workloads which do not
employ up-to-date optimization techniques and thus have quite
different behaviors from real-world applications. This paper first
briefly presents and characterizes the Graph Analytics Reposi-
tory for Designing Next-generation Accelerators (GARDENIA)1,
which is a benchmark suite for studies of irregular algorithms
on various massively parallel accelerators. It includes emerging
irregular big-data and machine learning applications, in which
mimic massively multithreaded programs deployed on not only
datacenters but also hand-on devices. Then we characterize
Nvidia GPU with GARDENIA, covering a wide spectrum of
metrics such as parallelization, cache locality, off-chip traffic and
irregularity. Based on the characterization on Nvidia GPU, we
unveil the performance bottlenecks of the current mainstream
accelerator and give architectural insights for building high
performance and energy-efficient domain-specific accelerators for
graph applications.

Index Terms—benchmark suite, performance measurement,
massive multithreading, graph analytics

I. INTRODUCTION

When we plan to design a custom accelerator for graph

analytics, the first thing is to acquire a real-world graph

benchmark suite to evaluate the architecture of the accelerator.

As the evolvement of the algorithms, many good optimization

methods are applied to the programs. However, current graph

analysis workloads are much naive and not well optimized.

So we want to provide a collection of high performance

workloads to more accurately reflect the real codes’ behaviors

and to help us reveal the real architectural implications. On

the other hand, the up-to-date accelerators are much various

in their micro-architecture, different accelerators may have

different characteristics. To make our research results more

general, we adopt a widely used Kepler GPU to research

on the architectural implication of accelerator, with multicore

CPU as performance baseline. We aim to offer comprehensive

evaluations on accelerators for real world applications.

Knowledge extraction and analytics on graph data structures

have become a hot spot in today’s large-scale datacenters,

such as web search engines, social networks and recom-

mender systems. For some algorithms which are frequently

executed on hardware , dedicated hardware accelerators are

more energy-efficient choices compared with CPU [1], [2].

1The source code can be found at github.com/chenxuhao/gardenia

On the other hand, general-purpose accelerators (e.g. GPUs

and MICs) are trying to expand their application areas such

as graph analytics [3], machine learning [4] and sparse linear

algebra [5]. Given the above trends and implications, it is

quite necessary to build a standardized benchmark suite for

characterizing and measuring the hardware accelerator design.
The goal of GARDENIA is to create a suite of emerging

irregular workloads that can drive researches on accelerator

architecture. For general-purpose accelerators, GARDENIA

is an important complement for generic benchmark suites

(e.g. Rodinia and Parboil) as its workloads contain much

more irregularities than those structured benchmarks, and

architectural implications for irregular workloads can be found

by running them and analyzing the performance outputs. For

accelerators used in specific domain [6], [7], [8], [9], however,

GARDENIA offers a collection of workloads, which represent

graph analytics, and the underlying hardware design should be

specialized for these algorithms.
GARDENIA is a graph analytics benchmark suite specifi-

cally targeting researches on accelerator architecture. GARDE-

NIA is quite different from other benchmark suites for graph

analytics. The main difference is the benchmarks incorporate

new optimization methods for massively parallel accelerators,

which behave quite differently from those straightforward im-

plemented benchmarks in previous available benchmark suites

to facilitate architectural research. Our experiments on GPU

reveal some new and different insights from prior knowledge

about graph algorithms on many core coprocessors. Based on

the observations, we give suggestions to researchers who want

to design many core coprocessors with higher performance.
This paper makes three contributions:

• Based on analysis on previous benchmark suites, we find

they are not suitable to evaluate future accelerators for

graph processing.

• We briefly introduce GARDENIA, a domain-specific

benchmark suite which provides irregularity and diversity

to allow architectural exploration for future accelerators.

• We use GARDENIA to evaluate several aspects of a

commonly used Nvidia’s GPU, including parallelization,

cache locality, off-chip traffic and irregularity. We give an

analysis on its performance bottlenecks and give advice

on coprocessor designers.

The rest of the paper is organized as follows: Section II

shows what motivates our work. The design of the benchmark

suite is described in Section III. Section IV explains the
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experimental methodology. We evaluate the performance of

GPU with the benchmarks in Section V. Section VI concludes.

II. MOTIVATION

This work is aimed to introduce a benchmark suite to be

used to evaluate the design of next-generation accelerators

which are used to accelerate real-world irregular applications.

In the motivation section, we first present why we need such

a benchmark suite. Then we will show why the existing suites

are not suitable for our evaluations.

A. Requirements for a Benchmark Suite

The following five requirements call for a domain-specific

benchmark suite targeting future accelerators:

Massively Parallel Applications Massively parallel accel-

erators, such as GPUs and MICs (Xeon Phi coprocessors)

are commonly used in current high performance servers and

datacenters. Those essential big-data analysis and machine

learning engines that drive many important applications often

use accelerators for good performance. For example, Google

Brain is driven by an ocean of GPUs. The trend for future

accelerators is to deliver higher performance through extreme

throughput and memory bandwidth. Consequently, applica-

tions with massive parallelization can utilize the additional

processing power for high performance.

Emerging Irregular Workloads Regular applications have

been intensively investigated on GPGPUs in the past decades.

Many applications with structured compute and memory ac-

cess patterns have been successfully mapped to GPUs, includ-

ing image processing, signal processing, physics simulation,

finance analysis, computational biology, machine learning etc.

Despite this progress, GPU makes its best when applications

have structured parallelism with little irregularity. Structured

parallelism matches well with data-parallel accelerators, but

more unstructured applications cannot simply take advantage

of them. These irregular applications which widely exists

in real-world behave quite differently from structured appli-

cations [10]. Future accelerators will be designed to meet

the demands of emerging irregular applications and a good

benchmark suite should have the ability to represent them.

Employ State-of-the-Art Techniques Plenty of efforts have

been made to map applications onto accelerators during the

past decades. These work include both parallel algorithm

innovations and optimization techniques. A benchmark should

be able to incorporate state-of-the-art techniques. Because

different microarchitectural behaviors may exhibit between

straightforward implementation and optimized one, misleading

the workload users.

Diverse Heterogeneous computing applications become in-

creasingly diverse, written in different parallelization models,

running on various platforms and accommodating different

usage models. The trend of recognition, mining and synthe-

sis [11] has become dominant with the rapid development of

big-data and machine learning applications in recent years. For

designing domain-specific accelerators, we can use specialized

collections of benchmarks to have a detailed study of these

areas, while decisions about general-purpose acclelerators,

such as GPUs and MICs, can be based on a diverse set of

applications.

Support Research Different to the benchmark suite only

for benchmarking real machines, a benchmark suite supporting

research has more requirements. It often provides not only

scoring systems but infrastructure to instrument, manipulate,

and simulate the included programs efficiently.

B. Limitations of Existing Benchmark Suites

In this part we will analyze how existing benchmark suites

can not meet the above requirements and thus considered

unable to evaluate the performance of future accelerators.

Generic Benchmark Suites for Accelerators. Rodinia [12]

and Parboil [13] are popular benchmark suites for GPU.

CUDA, OpenCL and OpenMP implementations are provided

in them. Although they are widely used, their benchmarks are

mainly regular applications with limited control and memory

divergency. They are not suitable for studying the up-to-date

irregular workloads on accelerators.

Graph Benchmarks for CPUs. GAPBS [14] is a CPU

based graph processing benchmark suite. It is a collection of

high-performance implementations written in OpenMP. Their

implementations are representative of graph performance on

multicore CPUs. However, no implementations for accelera-

tors are included in GAPBS.

Graph Benchmarks for GPUs. Pannotia [15] includes a

set of graph applications with OpenCL implementation on

GPU. But no specific optimization is applied in the benchmark.

We will show that applicaitons without high optimizations may

have different behaviors from optimized ones. GraphBIG [16]

includes both OpenMP implementations for multicore CPUs

and CUDA implementations for GPUs. Mainly focused on

CPU versions, the GPU implementations are mostly straight-

forward. Lonestargpu [10] assembles a set of irregular CUDA

benchmarks with high optimizations, and some of them are

graph workloads. Although it is a good candidate for studying

irregular applications on GPUs, they do not focus on graph

analytics and thus cannot be used for designing domain-

specific accelerators.

Graph Processing Frameworks Pregel [17], Graph-

Mat [18], Ligra [19], Graphlab [20], [21] and GraphRe-

duce [22] are parallel graph processing frameworks designed

for CPU. Gunrock [23], Medusa [24], CuSha [25]) are frame-

works designed for graph processing on GPU. The two frame-

works target for high performance and high programmability,

and many new techniques are provided. However, they are

impractical for architecture research because of the implemen-

tation complexity.

III. THE GARDENIA BENCHMARK SUITE

One of the GARDENIA suite’s targets was to provide

a set of workloads that represent those important irregular

applications running on massively parallel accelerators of

modern datacenters for scientific studies. 10 irregular ap-

plications, which were chosen from big-data analysis and
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Programs Acc-oriented Irregular Wokloads Diverse State-of-the-art Arch Reserach
GARDENIA 9

√ √ √ √ √
Parboil 11

√ × √ √ √
Rodinia 9

√ × √ √ √
Pannotia 8

√ √ √ × ×
GraphBIG 6

√ √ × × √
LonestarGPU 7

√ √ × √ ×
GAPBS 6 × √ × √ √
PARSEC 12 × × √ √ √
Gunrock -

√ √
-

√ ×

TABLE I
COMPARISON BETWEEN GARDENIA AND PREVIOUSLY AVAILABLE BENCHMARK SUITES

machine learning domains, are included for their popularity

and representativeness.

GARDENIA meets all the requirements outlined in Sec-

tion II:

• Each of the applications has been parallelized using

OpenMP for multicore CPUs and CUDA for GPUs.

• GARDENIA benchmark suite focuses on emerging ir-

regular workloads that is representive of big-data appli-

cations on modern datacenters equipped with massively

parallel accelerators.

• Each of the workloads applies state-of-the-art optimiza-

tion techniques in its area, i.e., the benchmarks are rea-

sonably optimized to get substantial speedups on GPUs

and MICs.

• The workloads as well as their datasets are diverse and

were chosen from many different areas. The workloads

are representative programs found in domains of big-

data analysis, machine learning and sparse linear algebra.

The datasets covers different characteristics such as size,

density and topology.

• GARDENIA efficiently supports accelerator architecture

research. GARDENIA is not a framework, so common

abstractions are not forced onto all implementations as

libraries do, but freed to do whatever is appropriate for

a given program. Thus it facilitates code instrumentation

and manipulation, as well as detailed architectural simu-

lations.

A. Optimization Techniques

We present the optimization techniques for irregular appli-

cations that have been widely applied in academic and industry

libraries [26], [23], [5], [27], [28]. Note that the benchmarks

should not either be over-optimized or unoptimized (straight-

forward) for the accelerator architecture. Those techniques that

are bound to specific architectures are not included in our

suite. Meanwhile, although irregular algorithms are difficult

to efficiently parallelize on data parallel accelerators due to

their irregularity [10], recent works [29], [30], [31], [32],

[33], [34], [35] have demonstrated that GPUs are capable to

substantially accelerate graph algorithms if the algorithms are

carefully designed and optimized. Those straightforward im-

plementations that are not able to achieve reasonable speedup

on accelerators should not be included since they can not

mimic the behavior of real-world applications. Section V will

show that straightforward implementations found in previous

available benchmark suites behave differently from our op-

timized workloads. To avoid over-optimization and include

state-of-the-art techniques at the same time, our strategy is

to choose the common optimization techniques that have been

generalized in libraries.
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(a) Topology-driven mapping strategy (one thread per vertex)

(b) Data-driven mapping strategy 
 (one thread per vertex)

(c) Data-driven mapping strategy 
(one thread per edge)

Fig. 1. Topology-driven vs. data-driven mapping strategies

Mapping Strategies. topology-driven or data-driven map-

pings [36] are utilized as two basic parallelism strategies.

Take graph analytics as an example, in the naive topology-

driven implementation, one thread is mapped to one vertex.

During an iteration, the thread remains idle or is assigned to

process the corresponding vertex. This strategy is a naive way

to implement the topology-driven algorithm on the accelerator.

In contrast to the topology method, the data-driven implemen-

tation uses an extra data structure named frontier queue to hold

the unprocessed vertices. Threads are created in proportion

to the size of the frontier for each iteration. Each thread is

assigned to process some vertices in the frontier, without idles

among the threads. Therefore, the data-driven implementation

utilizes the threads more efficiently than the topology-driven

implementation, with the shortcoming of maintaining a fron-

tier. However, as threads have various number of edges to

process, load imbalance problem still exists. The two strategies

are shown in Fig.1.

Load Balancing. Irregular algorithms have load imbalance
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(a) straightforward: one thread per vertex
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(c) work-efficient execution: one thread per edge

Fig. 2. Load balancing strategies

problem when mapped to accelerators, this problem becomes

worse for scale-free graph datasets. A warp-execution instead

of thread-execution method was propose by Hong et al. [37]

to optimize BFS through mapping warp to vertices (shown in

Fig.2). Merrill et al. [29] made a step further by proposing a

hierarchical load balancing strategy. In this method, a vertex

is mapped to a thread, a warp, or a thread block, depending

on the scale of its neighbor list. For MIC benchmarks, we use

OpenMP dynamic schedule scheme to automatically improve

load balance.

Depth = nDepth = n

V

Depth = n+1 Depth = n+1

V

(a) push (b) pull

Fig. 3. Push vs. pull traversal

Push vs. Pull. Generally graph algorithms support two

types of vertex operations on an implicit frontier: push and

pull. The push-style operation means the active status is

pushed by the current frontier of active vertices to its outgoing

neighbors so as to create the new frontier. push is intuitive

and commonly used. However, compared to the push-style

method, which starts with a frontier of active vertices, the

pull-style advance starts with a frontier of unvisited vertices

(shown in Fig.3). So the new frontier is generated by filtering

the unvisited frontier for vertices that have incoming neighbors

in the current frontier. Beamer et al. [38] proposed direction-

optimizing BFS which uses both methods to drive BFS. pull
is beneficial when the number of unvisited vertices drops

below the size of the current frontier.

Reordering Queue. The load balance and performance are

largely decided by the computation order of the vertices in the

frontier queue. Many graph primitives benefit from prioritizing

the computation of certain vertices, as some work can be saved

by computing those vertices first. For example, we use the

delta-stepping implementation for SSSP [39] on MIC. This

approach allows user-defined priority functions to organize

an output frontier into bins or buckets. Similarly, sorting the

frontier queue by degree can improve load balance in some

cases.

Other Techniques. Apart from the above techniques, the

suite also applies architectural optimization techniques to

make full use of the hardware. For example, the read-only

data is stored in the texture cache which is a kind of fast on-

chip memory. By this way, the read-only data is put in the

texture cache initially and the data-access latency is saved,

since the long access to the DRAM is not needed.

B. Input Datasets

Input dependency is a major feature of irregular applica-

tions. Therefore, graph workloads are characterized both by

the algorithms and the structure of the graphs that are used.

Real-world sparse graphs are picked from the University of

Florida Sparse Matrix Collection [40], the SNAP database [41]

and the Koblenz Network Collection [42]. The number of

vertices and edges for the graphs, as well as the algorithms

that have used a certain graph are shown in Table II. We

choose these graphs because they are different in size, degree

distribution, density of local subgraphs and so on.

We consider several characteristics of graph datasets: 1) the

graph size in terms of number of vertices and edges. 2) the

graph density/sparsity in terms of average degree. The degree

of a vertex in a graph is the number of connections it has

to other vertices. 3) the graph topology in terms of degree

distribution and diameter.

Graph Size Since the data size in modern datacenters

increases rapidly, common researchers find it hard to use low-

end servers to store and manipulate the large volume of data.

We select datasets large enough for those researches on big

data analysis with limited hardware budget. In addition, to

support architecture research, we need small but representative

datasets to ensure the programs finish in controllable time.

Graph Density The graph density is usually represented by

the average degree of all vertices in the graph. This parameter

is important because it is directly related to the amount of

locality in the graph workloads. A graph with higher density

will probably enjoy more data locality since more spatial

locality can be gained between adjacent vertices. However,

graphs with higher density have more edges, resulting in larger

working set. When the size of the working set is larger than

the cache capacity, cache thrashing problem becomes a major

issue [43]. Note that real-world graphs are usually sparse,

making graph analytics irregular.
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Graph Topology There are two categories of graphs in

terms of graph topology, mesh and social network. Commonly

used graphs can be divided into two categories in terms of

graph topology: meshes and social networks. Mesh topology is

originated from physically spatial sources and social network

topology comes from non-spatial sources. Meshes are struc-

tured and they are free from the problems caused by small-

world and scale-free properties. However, social networks

have a low diameter (small-world) and a power-law degree

distribution (scale-free), making them hard to partition and to

load balance.

We selected real-world graph instances used in our eval-

uation to be topologically diverse. For example, twitter,

soc-LiveJ both have the “social network” topology and

road has a “mesh” topology.

C. Workloads

The following workloads are part of the GARDENIA suite:

Breadth-First Search (BFS) is a fundamental graph prim-

itive. BFS on GPUs incorporates Merrill’s hierarchical load

balancing technique and implement both topology-driven and

data-driven mapping strategies.

Single-Source Shortest Paths (SSSP) [30] computes the

distance from a given source vertex to all reachable vertices.

SSSP on GPUs employs similar load balancing strategies as

BFS does.

Betweenness Centrality (BC) can compute the influence of

a vertex on a graph [31]. The betweenness centrality score of a

vertex is computed as the proportion of shortest paths between

all vertices that pass through the vertex. BC on GPUs employs

similar load balancing strategies as BFS does.

PageRank (PR) is an iterative algorithm which uses the

rank of the linked sites to rank a website [44]; at each iteration,

it uses the weighted sum of its neighbors’ scores and degrees

to update the score of each vertex. PageRank is implemented

in both pull and push fashion, while the pull version

achieves better performance as we evaluated.

Connected Components (CC) attaches the same label to

all vertices in the same connected component [45]. These

connected components are of the weak variety, which is in con-

trast to strongly connected components. warp-execution
is applied for CC on GPUs.

Triangle Counting (TC) counts the number of triangles

in an undirected graph. It is key to graph statistics such as

clustering coefficients [45]. To find triangles, it intersects each

vertex’s neighbor list with its neighbor’s neighbor lists. TC on

GPUs also employs the warp-execution technique.

Vertex Coloring (VC) assigns colors to vertices so that

no two neighboring (connected) vertices are assigned the

same color. We include recently proposed GPU implementa-

tions [46] which yield better coloring quality and performance

than the CUSPARSE library [5].

Sparse Matrix-Vector Multiplication (SpMV) is per-

haps the most important sparse linear algebra primitive. Our

GPU code is from the CUSP library [27] and employs

warp/vector-execution for memory coalescing. The

non-zero elements in the matrix of the workload are used to

multiply with the corresponding elements in the vector.

Symmetric Gauss-Seidel smoother (SymGS) is an im-

portant program in the multigrid sparse solver from HPCG.

Similar to SpMV, SymGS also finds out non-zero elements in

the matrix. The elements are multiplied with the corresponding

elements in the vector. warp/vector-execution is also

applied on GPUs.

Stochastic Gradient Descent (SGD) is a key method to

solve the matrix factorization problem [47] in collaborative

filters of recommender systems. It decomposes the ratings

matrix into two smaller matrices, a (user×features) matrix,

and a (features×item) matrix, and learn these iteratively.We

implement warp/vector-execution for memory coa-

lescing and shuffle operations on GPUs [48].
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1,   3 0,   4,   62 5,  7 8 6,  8

0 2 3 3 6 8 9 9 11 11
0 1 2 3 4 5 6 7 8 9

Fig. 4. An example of the compressed sparse row (CSR) format.

IV. METHODOLOGY AND EXPERIMENT SETUP

We use the University of Florida Sparse Matrix Collec-

tion [40], the SNAP database [41] and the Koblenz Network

Collection [42], which are real-world sparse graphs. The

matrices with the respective number of vertices and edges

are shown in Table II and we use the compressed sparse row

(CSR) format to store the sparse matrices (shown in Fig.4). In

summary, we use 19 real-world graphs for our evaluation. The

graphs are much different in size, degree distribution, density

of local subgraphs and application domain.

We compare 2 platforms including (1) Intel
multicore CPU: OpenMP implementation, (2) Nvidia
GPU: CUDA implementation, We conduct the experiments

on the NVIDIA K80 GPU with CUDA Toolkit 8.0 release.

OpenMP is executed on Intel Xeon E5 2620 2.40 GHz CPU

with 12 cores. We launch 12 threads for OpenMP since

this is the best performing configuration as we evaluated.

We bind the 12 threads to the 12 cores in one CPU for

the stability of performance. We use gcc and nvcc with

the -O3 optimization option for compilation along with

-arch=sm_37 when compiling for the GPU. Hardware

information is acquired by nvprof on real machines.

The benchmarks are executed 10 times and the average

execution time is collected to avoid system noise. Only the

computation time of each benchmark is used for timing.

The experiment is designed as 4 parts, including paral-

lelization, cache localtiy, off-chip traffic and irregularity. The

4 parts are independent and irregularity may affect cache
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locality and off-chip traffic. After evaluating on the 4 parts,

we analyse performance bottlenecks within the 4 aspects

and give architectural insights for building high performance

and energy-efficient domain-specific accelerators for graph

applications.

V. EVALUATION

In this section, we will give a comprehensive evaluation on

our benchmark suite. We will focus on the aspects of par-

allelization, cache locality, off-chip traffic and irregularity of

the benchmark suite, and give an analysis on its performance

bottlenecks.

A. Parallelization

Parallelization has significant effects on GPU performance.

More parallelism means more hardware resources are utilized

and the parallel execution model is met, leading to high

performance. In this section, we will show and analyse the

parallelism for our workloads with different datasets.

Figure 5 shows the speedups of our workloads on GPU

over multicore CPU with different datasets. The baseline

CPU programs are highly optimized openMP programs which

run efficiently on multicore CPU. Quite diversed acceleration

effects are acquired by CUDA programs on GPU over openMP

programs, ranging from 0.36 (BFS) to 7.87 (SpMV) times.

There are two main reasons for the low speedups. The first

reason is the openMP programs run on muticore CPU are

highly efficient. For example, the openMP program version

for BFS is a highly optimized program developed by Beamer

[38]. The other reason is that the much irregularity and

complexity in programs (such as BFS and BC) can’t meet

with GPU’s parallel computing model. For programs with high

speedups, the speedups are mainly from careful optimization

of memory accesses and high utilization of hardware resources

(including compute units and memory bandwidth).

In general, SpMV and SGD have better execution effects

across its whole datasets on GPU over CPU, while BFS and

BC have worse performance on GPU. For different datasets

in the same workload, speedups vary greatly, ranging from

0.48 to 2.76 (for CC). That indicates different datasets have

diverse behaviors and have significant effects on workloads’

performance. So we can get the Gardenia benchmark suite

is very irregular and input sensitive. As we will see in the

following sections, different datasets have more important

effects on speedups than on irregularity and other metrics.

The main reason that causes low parallelism and inefficient

GPU computing is under-utilization of SIMT lanes. Figure 6

shows the utilization of GPU SIMT lanes which is acquired by

the hardware counter. The counter records the average active

threads per warp to the maximum number number of threads

per warp supported on a multiprocessor, which shows the

utilization of SIMT lanes. The results show the SIMT lane

utilization varies greatly in different workloads with different

datasets, with a range from 11% to 100%, because different

workloads with different datasets show different data structures

and different parallelism. In average, BC, PR, SpMV, SymGS

and SGD have relatively higer SIMT lane utilization, and TC

has lower utilization (resulting from inefficient data reduction).

For SGD and PR, different datasets have similar results,

implying they are both insensitive to datasets. But for VC,

the highest value is about 3 times of the lowest one, implying

it is sensitive to datasets.

We make analysis on the relationship between SIMT utiliza-

tion and speedup, and find SIMT utilization has relationship

with speedup. SGD and SpMV both have high SIMT utiliza-

tions, and their speedups are high. BFS and TC have relatively

low SIMT utilization, and their speedups are low. However,

the lowest utilization will not always cause the lowest speedup

(such as TC), because it can improve performance through

optimizations in other aspects, leading to a medium speedup.

BFS and SSSP have nearly the same utilization, but their

speedups vary. This is because other aspects take effects.

B. Cache Locality

In Kepler GPU, L2 data cache is the last level cache (LLC).

Memory access that fails in LLC will induce long latency

access to the off-chip memory, which will degrade GPU per-

formance. So data locality performance in L2 cache has great

importance on GPU performance. In figure 7, workloads show

diverse behaviors in L2 hit rate. For TC and SGD, they both

have high average L2 cache hit rate, which is as high as 98%

and an average of about 80%. Large graphs tend to perform

badly in the figure, because the limited L2 cache capacity can

not reserve so much data. Particularly, we find the dataset of

Wikipedia gets the worst performance in 5 workloads, that are

in BFS, SSSP, BC, PR and CC. Its worst hit rate is only 19%

in PR. This is because Wikipedia’s graph characteristic is not

matched with these workloads and LLC fails to capture data

locality. So there is room for optimization, which we leave for

the future work. Moreover, for a single workload, hit rates vary

clearly across different datasets, ranging from 72% to 19% (in

PR). This shows datasets also have great impact on workload

performance. However, there are three exceptions, namely BC,

TC and VC. Especially for VC, its hit rate ranges from 68%

to 63% across 5 datasets, showing a fairly flat distribution of

hit rate.

We also find GPU speedups have tight relationship with

L2 cache hit rate. SGD has higher L2 cache hit rate, and its

speedup is high. Although TC has bad SIMT utilization, it

achieves medium speedup by the high hit rate in L2 cache.

SymGS have low L2 cache hit rate and its speedup is also

low. This is because L2 cache is the last level cache on-chip

and its performance has great effects on GPU performance.

C. Off-chip Traffic

For the bandwidth restricted programs, performance will

increase when off-chip bandwidth increases. So optimization

on off-chip accesses will have significant benefits. For the

programs not restricted by bandwidth, increased off-chip band-

width takes no effects.

Figure 8 shows the read and write bandwidth of GPU ker-

nels, and figure 9 shows their corresponding ipc performance.
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Graph # Vertices # Edges Algorithms Brief Description
Road-central 14,081,816 16,933,413 BFS,SSSP,BC,PR,CC, Road Central

Holly 1,139,905 57,515,616 BFS,SSSP,BC,PR,CC Hollywood
Twitter 21,297,772 265,025,809 BFS,SSSP,BC,PR,CC Connection of Twitter users
Amazon 2,146,057 1,230,915 5,838,041 SGD Amazon ratings network dataset
Thermal 1,228,045 4,904,179 SymGS,VC Thermal Problem

Nlp 8,345,600 118,931,856 SymGS,VC Symmetric indefinite KKT matrices
Ldoor 952,203 23,737,339 SymGS Indeed test matrix
Rgg 1,048,576 6,891,620 TC Random Geometric Graph

Jester 64,000 150 1,761,439 SGD Jester Ratings
Netflix 480,189 users 17,770 movies 99,072,112 ratings SGD Netflix Prize
Ratings 138,493 27,278 20,000,263 SGD Ratings
Road-CA 1,965,206 2,766,607 VC Road network of California
Delaunay 1,048,576 3,145,686 TC,VC Delaunay Graph
Web-wiki 1,864,433 4,507,315 TC,VC Web of wikipedia
Af-shell 504,855 9,046,865 SymGS Sheet metal forming
Cage15 5,154,859 99,199,551 SymGS DNA electrophoresis
LiveJ 4847571 68993773 BFS,SSSP,BC,PR,CC,TC LiveJournal online social network
Pokec 1,632,803 22,301,964 TC Pokec online social network

Wikipedia 3,566,907 45,030,389 BFS,SSSP,BC,PR,CC Links in Wikipedia pages

TABLE II
SUITE OF BENCHMARK GRAPHS
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The values of each workload in the two figures are acquired

by using geometric means across various datasets. We can see

read bandwidth is much higher than write bandwidth in most

workloads. This is because there are many read operations

but few memory write operations in our algorithms. Memory

bandwidth (take read bandwidth as memory bandwidth) has

no clear relationship with the ipc performance. For example,

CC and SpMV have high bandwidth and their ipc are not high.

TC has the lowest bandwidth but its ipc is the highest.

In our experiment, GPU can get an peak memory bandwidth

of 170GB/s, which is obtained with bandwidth test in CUDA

SDK. We can see the bandwidth values of our workloads are

quite lower than the peak bandwidth value, indicating off-chip

traffic is not constrained. It is hard for the irregular workloads

to utilize the off-chip bandwidth and many of the compute

operations are finished on-chip. We will further analyse the

problem of off-chip traffic in the following sections.

D. Irregularity

Graph algorithms are a kind of highly irregular programs.

Irregularity problem causes non-coalesced memory accesses

and under-utilization of bandwidth. In this section, we will

make evaluation on irregularity problem in GPU.
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As we know, irregularity has bad effects on SIMT execution

efficiency and causes replay overhead. We use BDR (Branch

Divergence Rate) and MDR (Memory Divergence Rate) to

evaluate branch divergence and memory replays, respectively.

The higher BDR and MDR values indicate more irregularity,

thus computing resources and memory bandwidth are under-

utilized. Figure 10 shows the irregularity distribution of differ-

ent workloads. Each point in the figure represents a workload

in Gardenia suite. It shows a scattered distribution in whole.
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But most points distribute less than 1.0 in MDR and 0.6 in

BDR, except for VC and TC. So most workloads are neither

branch-bound nor memory-bound. TC has moderate MDR

value, but its BDR value is as high as 0.84. This means TC has

many branch divergences and its warp execution efficiency is

low (due to its reduction operations). VC’s BDR value is low,

but its MDR value is high as 3.2. This indicates the memory

system works inefficiently for VC and lots of issued memory

access are replayed.
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Fig. 11. BDR and MDR of different workloads with different datasets

To give a more comprehensive illustration the irregularity

of our benchmarks, we illustrate BDR and MDR of different

workloads over different datasets in figure 11. Similar to figure

10, most points in figure 11 are located in the region of less

than 0.5 in BDR and less than 1.0 in MDR. This proves most

workloads of Gardenia benchmark suite have low irregularity,

which is partly due to state-of-the-art optimization techniques.

Furthermore, we find most datasets from the same workload

distribute locally. This shows irregularity is mainly determined

by the workloads and it is insensitive to the input datasets.

E. Performance Bottleneck Analysis
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Fig. 12. Ipc and bandwidth of different workloads across different datasets

In this section, we will make performance bottleneck analy-

sis on Gardenia benchmark suite, in the aspects of paralleliza-

tion, bandwidth, cache peformance and irregularity.

1) parallelization: More compute units will have positive

effects on parallelism, but it may not be energy efficient. Be-

cause SIMT utilization of Gardenia benchmark is in an average

of about 60%, more compute units will bring more power

consumption but have limited effects on graph workloads’

performance, which have different degrees of parallelism by

nature. So the next-generation accelerator should be able to

balance computating power and energy efficiency, with a

moderate number of compute units.

2) bandwidth: Scientific computing has much parallelism

and long memory latencies can be well hidden. Because of

its large number of off-chip memory access, scientific appli-

cations are mainly memory bandwidth bound. To reveal the

effective bandwidth effects on performance in our workloads,

we measure ipc and the effective bandwidth of the workloads

with different datasets, which is shown in figure 12.

For the highly optimized programs in Gardenia benchmark

suite, such as vector-centric or warp-centric optimized pro-

grams, they achieve high memory bandwidth and high ipc at

the same time. However, the points in figure 12 are still not

close to peak value of the bandwidth, implying bandwidth

is not fully utilize. Points from the same workload distribute

dispersedly along x-axis and y-axis, which means the ipc and

bandwidth are sensitive to the datasets. Most dots locate in the

left higher and middle lower region. Less effective bandwidth

indicates more compute operations, leading to higher ipc.

However, For BFS, SSSP and VC, their points distribute in

the left lower region, that is because the programs fail to

utilize compute units and memory bandwidth, presumably due

to memory latency [14]. Our workloads don’t have enough

in flight memory accesses to hide memory latency, which

becomes a bottleneck in performance. So Gardenia suite is

not bandwidth limited and is dataset sensitive. The attention

of the accelerator designers should be focused on latency, not

on off-chip bandwidth, since no potential performance gains

can be expected through higher bandwidth.

3) cache performance: Cache performance is effective to

reduce memory latency. As analysed in section V-B, L2 cache

hit rate has significant effects on GPU performance. Most

workloads’ L2 cache hit rates are below 50% and have room

for optimization. Accelerator designers should design better

cache architecture dedicated for graph algorithms and graph

datasets to find an optimum point balancing compute and

memory access, and reducing memory latency. Optimizing

cache performance can not only improve cache hit rate, but

also reduce MDR values, indirectly reducing irregularity.

4) irregularity: Irregular issues are mainly determined by

algorithms themselves, and parallelism and cache performance

also have effects on irregularity in architectural aspect. So we

should find effect ways to relieve the previous bottlenecks to

solve the irregularity issues.

VI. CONCLUSION

In this paper, we use GARDENIA, a domain-specific bench-

mark suite for accelerators, to evaluate architectural character-

istics of a commonly used Nvidia’s GPU. We focus on GPU’s

parallelization, cache locality, off-chip traffic and irregularity.

A detailed analysis on its performance bottlenecks is given

and useful advices are given to coprocessor designers. We

conclude, (1) it is not the case that the more compute units
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the accelerator has, the better performance it can get. We

have to take both parallelization and energy efficiency into

consideration; (2) the attention of the accelerator designers

should be focused on latency, not on off-chip bandwidth,

since no potential performance gains can be expected through

higher bandwidth; (3) accelerator designers should design

better cache architecture dedicated for graph algorithms and

graph datasets to find an optimum point balancing compute

and memory access, and reducing memory latency.
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