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Abstract—In order to overcome the cloud service 
performance limits, the INPUT Project aims to go beyond the 
typical IaaS-based service models by moving computing and 
storage capabilities from the datacenters to the edge network,
and consequently moving cloud services closer to the end 
users. This approach, which is compatible with the concept of 
fog computing, will exploit Network Functions Virtualization 
(NFV) and Software Defined Networking (SDN) to support 
personal cloud services in a more scalable and sustainable way 
and with innovative added-value capabilities. This paper 
presents OpenVolcano, the open-source software platform 
under development in the INPUT Project, which will realize 
the fog computing paradigm by exploiting in-network 
programmability capabilities for off-loading, virtualization 
and monitoring. 

Keywords-fog computing; SDN; NFV; personal cloud 
services. 

I. INTRODUCTION

The present-day Internet is characterized by a number of 
devices and communication media that certainly were not 
envisaged in the original network design. In particular, the 
advent of the Internet of Things (IoT) will further extend the 
plethora of available connected objects, bringing their 
number, according to Ericsson, up to 50 billion in 2020 [1].
Since such devices are characterized by limited storage and 
computational capabilities, their diffusion has led to the 
development of a significant number of cloud services to 
provide the support needed by smart devices. As a 
consequence, new networking and IT architectures are 
required that also take into account a more energy/cost 
efficient and environmental friendly approach. 

The joint adoption of the cloud computing supported by 
Network Functions Virtualization (NFV) [2] and Software 
Defined Networking (SDN) [3] architectures is considered 
a promising solution to promote flexibility and foster the 
introduction of new services otherwise unfeasible. This 
solution represents the foundation to the Infrastructure-as-
a-Service (IaaS), a realization of the cloud computing 
paradigm that provides virtualized computing resources 
over the Internet. However, the proper deployment of 
similar paradigms is limited by the performance level 
currently offered by datacenters, which are located near the 
core networks and present end-to-end latencies around two 
orders of magnitude higher than the required values.  

To address this issue, fog computing has been proposed 
[4] by CISCO with the goal of deploying storage, 
computing and configuration features closer to the end-user 
instead of inside datacenters. This deployment scheme has 
three main advantages: i) the reduced distance of the user 
from his/her services reduces the end-to-end latency, hence 
improving overall Quality of Services and Experience (QoS 
and QoE); ii) the deployment of services inside the edge 

network allows for better control on the allocation of 
physical and logical resources, with the possibility of 
applying economies of scale and power management 
schemes, and improved privacy; iii) additionally, the 
telecom providers can hide the complexity of the underlying 
network infrastructure, and hence promote simplified 
applications design. 

In this respect, the INPUT Project [5] is devoted to foster 
Future Internet infrastructures beyond the typical IaaS-
based service models by moving computing and storage 
capabilities, from both cloud services and user devices, to 
the edge network. This approach will exploit the ability to 
directly access network primitives, and will improve 
scalability in the interactions of the network with users and 
datacenters. 

In order to provide scalable and virtualized networking 
technologies able to natively integrate cloud services, both 
personal and federated, the INPUT Project is realizing 
OpenVolcano, an open-source software platform for fog 
computing, which will exploit in-network programmability 
capabilities for off-loading, virtualization and monitoring.  

The paper is organized as follows. Section II focuses on 
the deployment of the personal cloud services. Section III
reports the rationale behind the OpenVolcano architecture, 
while its control and data plane building blocks are 
described in Sections IV and V, respectively. Section VI
provides further details and performance evaluation on 
quake, the internal virtual switch. Finally, conclusions are 
drawn in Section VII. 

II. DEPLOYMENT OF PERSONAL CLOUD SERVICES

The INPUT technologies will enable next-generation 
cloud applications to go beyond classical service models 
and even to replace physical Smart Devices (SD), usually 
placed in users’ homes (e.g., network-attached storage 
servers, set-top-boxes, video recorders, home automation 
control units, etc.) or deployed around for monitoring 
purposes (e.g., sensors), with their “virtual images,” 
providing them to users “as a Service”. A virtual image is 
defined to be a software instance that dematerializes a 
physical network-connected device, and that provides its 
virtual presence in the network and all its functionalities. 
Virtual images are meant to realize smarter, always and 
everywhere accessible, performance-unlimited virtual 
devices into the cloud. SDs can be fully or partially 
virtualized depending on their constraints on physical 
components: sensors cannot be entirely virtualized, since 
they still need the hardware to acquire measures and to 
transfer them elsewhere. On the contrary, entertainment 
appliances can be fully virtualized, and interfaced with 
visualization devices (e.g., a television or a tablet) through 
standard and well-known protocols. A breakdown of the 
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carbon footprint reduction in presence of partial, full or not 
virtualized SDs can be found in [6].

These SDs will be made available to users at any time 
and at any place by means of virtual cloud-powered 
Personal Networks, which will provide users with the 
perception of always being in their home Local Area 
Network with their own (virtual and physical) SDs, 
independently from their location. 

A. The Personal Network  
A Personal Network (PN) is a secure and trusted virtual 

overlay network composed of standard L2 protocols and 
operations equivalent to the ones presently available in the 
user’s home network, independent of their location. The 
correct routing of the L2 data and signaling packets is 
guaranteed by the OpenFlow’s matching/action rules.

PNs are realized by virtualizing typical Network 
Functions provided by the user’s home gateway, and 
transferring these Virtual Network Functions (VNFs) into 
software instances running in commodity computing 
facilities deployed in the telecom provider edge network. 

As defined by ETSI [7], VNFs can be provisioned either 
in a Virtual Machine (VM) environment or via bare metal. 
The choice of one solution over the other is driven by the 
resources required for a specific network function;
moreover, migration can be less efficient in the presence of 
bare metal virtualization because of the need to power on 
physical machines, which implies a latency overhead.

Hence, for the design of the VNFs, the evaluation of 
whether to implement in a VM or on bare metal will be 
made on a case by case basis. 

Physical SDs typically connected to the user’s PNs are 
fully or partially virtualized through software instances 
running at different levels of the edge network 
infrastructure. As the use of VMs allows a higher level of 
isolation, they will probably be the best candidate for this 
deployment.  

III. THE OPEN VOLCANO CONCEPTION

In order to allow the deployment of the personal cloud 
services as described in the previous section, the edge 
network nodes need to be re-thought and re-designed in 
order to provide the support for the new cloud services, 
including their communication and information exchange. 
Among the architectural and logical extensions that they 
will undergo, an important role will be played by in-network 
programmability, hardware off-loading and power
management capabilities. The architecture that the INPUT 
Project has selected as a starting point for the development 
of the edge network nodes is the Distributed Router Open-
Source Project (DROP) [8].

DROP was originally designed as a middleware for 
realizing extensible multi-chassis Linux software routers on 
top of Component-off-the-shelf hardware platforms [9].
During the ECONET Project [10], DROP has been 
extended to a SDN/NFV-enabled modular router, with fine-
grained in-network programmability and power 
management capabilities exposed by means of the Green 
Abstraction Layer (GAL) [11]. Because of these 
characteristics, DROP represents a favorable starting point 
for the INPUT research activities, which aim to vertically 
integrate the networking functionalities with the personal 
cloud services support in a scalable way. 

In its basic conception, the DROP architecture had been 
designed to act as “glue” among a large number of the most 
promising and well-known open-source software projects, 
providing novel data- or control-plane capabilities. 
Throughout its evolution, this characteristic has been 
maintained by incorporating the protocols and libraries that 
are promisingly contributing to the innovation of the 
networking and computing scenarios, such as OpenStack 
[12], KVM [13] and libvirt [14].

Thanks to these new features, the architecture has made 
a leap from a Linux software router to an open-source 
software platform for fog computing. For this reason, the 
original name was not suitable anymore for a platform that 
has become so different from its starting point. The 
OpenVolcano will represent the prototype platform that will 
be exploited throughout the INPUT Project lifetime and 
beyond to provide scalable and virtualized networking 
technologies able to natively integrate cloud services, both 
personal and federated.  

It is worth noting that this platform presents some 
similarities with OpenStack, which in fact is one of the 
open-source software projects included in this platform as 
explained in the following sections. However, the main 
difference is that OpenVolcano is natively conceived to 
operate inside fog environments, which guarantees that 
service instances will always be physically located in the 
proximity of the user, and be deployed and dynamically 
migrated according to the user location. In addition, the 
performance evaluation is carried out both on the service 
QoS/QoE requirements and on energy efficiency. 

The main logical building blocks composing the 
OpenVolcano architecture, as depicted in Figure 1, are the 
StratoV and the Caldera, which represent the control and 
the data plane of the architecture. Physically, these building 
blocks, and the elements composing them, can be located in 
multiple machines spread inside the telecom provider edge 
network, in order to guarantee the best allocation of the 
applications and functions needed to realize the personal 
cloud services. The communication among the various 
modules and the stakeholders (users, telecom operator and 
cloud service provider) is mainly performed through 
RESTful APIs and web interfaces, with additional 
OpenFlow (OF) connections and proprietary protocols 
when needed.  

IV. THE OPENVOLCANO CONTROL PLANE: STRATOV
The StratoV includes the features typically found at the 

control plane of an IP router, but it is not limited to them. 
As shown in Figure 1, from the functionality point of view, 
the StratoV can be divided into three layers, which are 
devoted to the collection of the data and their configuration,
the elaboration of the resource allocation and forwarding 
rules, and the commit of such rules. 

The network manager is physically located in a 
remote/separate server, but it belongs to the control plane 
architecture in every respect, and more specifically to the 
Data Collection and Configuration layer. The network 
manager is in charge of the long term 
configuration/optimization of the available physical and 
logical resources to properly satisfy the bandwidth and 
quality levels required by the different cloud services 
instantiated over time. In more detail, it has the ability to 
collect the monitored data coming from the elements in an 
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internal database, which provides a full view of the 
deployed services and network states. Thanks to this 
information, the Long-term Analytics task allows predicting 
service demand, planning resource provisioning, preventing 
congestion and possible failures, and maximizing energy 
saving. 

The database collects the information provided by 
OpenStack that regards the users and their subscribed 
services. The database has also the ability to detect 
modifications in the services subscriptions and notify them 
to the control functionalities through a REST interface. 

The pyroclast block presents the same functionalities 
provided by the OpenStack Nova and Neutron modules. In 
more detail, it is exploited by the cloud service provider to 
manage the service chains, including the computation and 
networking aspects needed for a proper service support.  

The Elaboration layer comprehends all of the 
functionalities needed to aggregate, elaborate and deliver 
the updated physical and logical configuration for the data 
plane devices. It is composed of three main modules. 

The cinder module is in charge of aggregating the 
monitored data and detecting possible faults. This module 
can perform synchronous requests for information to the 
data plane devices and the network manager and verify the 
proper behavior of all network components. The conduit
module can be considered the center of the control plane, as 
it is responsible for receiving the information related to 
monitoring and services, forwarding it for further 
elaboration, and then provide the obtained configuration to 
the second control stage. 

The crater is in charge of the real-time configuration of 
the logical and virtual resources, which can be triggered by 
the current users’ location and the monitoring of parameters 
like the power consumption or CPU utilization. The data 
used to feed this engine come from both the aggregated 
monitored information provided by the cinder and the 
deployed services as reported by the database. Exploiting 
these data, a number of Consolidation and Orchestration 

algorithms calculate the optimal resource allocation, 
according to the required QoE/QoS and the estimated 
workload/traffic volumes, and the OpenFlow rules. 

In the case of faults, cinder signals the presence of a 
device or sub-element that is not behaving properly to the 
conduit, which sends a request to the crater. The device is 
then removed from the graph of the available resources and 
a new configuration is computed accordingly. 

The communication of the re-calculated OF rules and 
allocations is managed again by the conduit, which 
transmits them to the Commit stage to be further made 
available to the data plane elements. Specifically, the OF 
rules computed by crater are sent to magma, which provides 
the typical OF controller capabilities and is responsible for 
updating the flow tables of the elements devoted to 
forwarding (e.g., physical and virtual OF switches).

Finally, lava has the ability to abstract the virtualization 
libraries deployed at the data plane in order to make them 
transparent to the computed resources allocation. In this 
way, the rules can be computed by crater without the 
knowledge of the virtualization platform (libvirt, 
Capedwarf, etc.) deployed on each server. 

V. THE OPENVOLCANO DATA PLANE: CALDERA

The Caldera of OpenVolcano represents the data plane 
and can be composed of up to four modules. As shown in 
Figure 2, the servers in the data plane are connected among 
themselves and to the StratoV through OpenFlow switches. 

The servers composing Caldera are also built on top of 
a Linux architecture. Netlink is used for communication of 
the kernel with the user-space, where most of our 
implementations take place. In fact, user-space libraries 
have been demonstrated to provide massive performance 
improvements, at the price of a reduced number of already 
available network functionalities with respect to the kernel-
level forwarding [15]. 

Aside from Netlink, which is mainly used for the 
exchange of generic data between the kernel and user-space, 

Figure 1. The OpenVolcano Architecture.
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like requests for acknowledgement, echo or FIB updates, 
the other interfaces between kernel and user-space are the 
/proc and /dev filesystems. The ACPI [16] standard is 
used to represent the power management capabilities of the 
hardware components (packet processing engines, network 
cards, cores, etc.). 

Packets incoming through the NICs are managed by 
high performance data packet applications based on DPDK 
[17]. All packets received through the NICs are then taken 
in charge by the quake module, a software OpenFlow switch 
implemented in the user-space according to the OF 1.3 
specification, which will be described in more detail in 
Section VI. KVM [13] has been chosen to implement the 
hypervisor in charge of handling the VMs according to the 
directives sent by conduit, as sketched in the previous 
section. 

The geyser module provides the data related to the 
server current status to the crater module after the 
aggregation operated by cinder. Such data include the 
current energy state (according to the ACPI standard), CPU 
load and memory, which can be monitored both globally 
and at single process level. The communication is managed 
through the GAL REST interface.  

The geyser and quake modules are present in every 
server composing the data plane, while additional libraries 
can be available depending on the deployed service. In the 
example reported in Figure 2, libvirt is used to manage VM 
migrations, while other libraries such as Capedwarf allow 
the management of PaaS instances.  

VI. THE QUAKE MODULE

The quake module included in the Caldera has been 
designed to manage the received traffic and direct it to the 
correct function located in that server. Quake has been 
implemented according to OpenFlow Version 1.3, and 
provides the protocol’s basic functionalities, such as echo 
request/reply, features request/reply, and hello messages.

Quake is an original design of the project, and it has been 
implemented by exploiting the DPDK libraries available for 
packet capture and for the design of the packet buffers.  

In order to overcome the rigid resource allocation of 
DPDK, in which the number of threads and their affinity are 

set at boot and cannot be modified at runtime, the 
introduction of a more flexible affinity has been realized by 
exploiting the worker threads: during the initialization 
phase, a dispatcher thread, associated with the main core 
(usually Core 0), and a number of worker threads are started. 
The affinity of the thread is fixed, but the number of active 
worker threads can be changed at runtime. The dispatcher 
will not use the inactive worker threads. 

The internal structure of the virtual switch is shown in 
Figure 3. After the initialization, the dispatcher cyclically 
queries the Rx queues of the physical and logical ports 
waiting for incoming packets. Upon packet arrival, the 
dispatcher retrieves the packet from the queue and decides 
at runtime the worker thread that will receive the packet. 
The designated worker thread is then in charge of matching 
the packet header against the OF table using a specific OF 
function and determines where to forward the packet. The 
possible destinations are the transmission queue of a 
physical port (as shown in Figure 3, there is a dedicated Tx 
queue for each worker thread to avoid the need for some 
synchronization mechanism), or the transmission queue (in 
this case, multi-producer) of a logical port. The latter case 
regards packets that are directed to the virtualized images of 
the personal cloud services, as will be described in the next 
section. 

The ofp_lib module guarantees the communication with 
the magma module located in the StratoV,
generating/receiving the packets and updating the flow 
tables.  

A. Performance Evaluation 
In order to characterize the performance level of the 

virtual switch under different traffic conditions, and to 
identify current issues and room for improvement, some 
tests have been run on our prototype and are reported in this 
section. The same tests have also been performed on another 
device equipped with Open vSwitch to provide a term of 
comparison. 

Both devices are built on an Intel Xeon E5-2643 v3 
processor with two CPUs and six cores with a working 
frequency up to 3.40GHz, and 8 x 8 GB DDR4 2133 ECC 

Figure 2. The data plane deployment.
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RAM memory. The operating system is Linux version 
4.2.6-3 x86_64. 

Tests are performed by transmitting traffic to the tested 
devices and measuring its throughput using an OptIxia 
router tester [18] connected by a couple of 10 Gigabit 
Ethernet links, one in transmission and one in reception. 
Continuous traffic is transmitted at different offered loads, 
growing from 1 Gbit/s to 10 Gbit/s. 

In the first test case, the throughput is measured on the 
device equipped with Open vSwitch (results labelled as 
“OVS” in Figure 4. Throughput percentage measured in 
presence of varying packet sizes on the two devices under 
test.) and our prototype exploiting the DPDK libraries 
(results labelled as “DPDK” in Figure 4).

As expected, the results in Figure 4 show that both 
devices present better performance in the presence of longer 
packets, with zero-loss throughput for 1518-Bytes packets.
Regarding the device based on Open vSwitch, the decay in 
the throughput for packets of 64 Bytes begins immediately, 
while for packets of 570 Bytes losses begin at 40% of the 
offered load (e.g., 4 Gbit/s) and continue with the same 
trend of the smaller sized packets. This trend shows that the 
OVS switch can handle a certain number of packets, 
discarding all of the traffic above that threshold. This 
behavior is confirmed by the results represented in terms of 
Gbit/s, as reported in Figure 5, where it can be seen that the 
throughput stays constant once packet loss begins.  

Regarding our prototype based on DPDK, it 
outperforms the OVS-based device for the respective packet 
sizes. Considering the results in Figure 4, it can be seen that 
the prototype loses visible traffic between 20% and 30% of 
the offered load, then throughput starts improving again. 
This behavior is due to the fact that the prototype enters a 
deep idle state when packets are too separated from each 
other. This aspect, however, does not prevent the switch 
from outperforming the reference device and will be solved 
in the near future. 

In the second test case, traffic is not composed of fixed 
size packets, but it follows an Internet Mix (IMIX) 
distribution [19]. Traffic is also divided in a number of 
flows going from 1 to 256, in order to trigger matches in the 
switches flow tables. The results of these tests are reported 
in Figure 6. 

Throughput decreases for both tested devices as the 
number of flows grows. However, the differences for the 

OVS switch are not very significant, showing that the losses 
are more driven by the volume of received traffic, hence 
preceding the classification phase. It is worth noting that the 
OVS-based switch performs a hash search in the entry table, 
hence the time complexity is O(1) and independent from the 
number of entries. On the other hand, for the prototype, 
losses appear to be proportional to the number of flows, due 
to a different choice of the flow table search algorithm that 
leads to a time complexity of O(n), and become very severe 
above 128 flows, because above that threshold the flow 
table becomes too big to be kept in the cache memory. 

This behavior is further confirmed by a final 
measurement that has been performed under the same 
conditions of Figure 6 for 64 flows, but with the addition of 
a rule in the flow table that modifies the MAC destination 
address. The results can be seen in Figure 7, and show again 
that the increased number of operations on the flows 
impacts the performance of the prototype but not those of 
the OVS-based switch. 

VII. CONCLUSIONS

The European Commission-funded INPUT Project is 
devoted to foster future Internet infrastructures by moving 
computing and storage capabilities to the edge network. The 
virtualization of home entertainment appliances and of 
sensors, which will be made available to the users as cloud 
services, will add potentially infinite smartness and capacity 
to devices with performance- and functionality-constrained 
hardware platforms. 

This paper has described OpenVolcano, the prototype 
that will be exploited throughout the INPUT Project lifetime 
and beyond to provide scalable and virtualized networking 
technologies able to natively integrate cloud services, both 

Figure 3. The quake module internal structure.
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personal and federated. OpenVolcano is an open-source 
software platform for fog computing, which exploits the 
most promising and well-known open-source software 
projects to introduce in-network programmability 
capabilities for off-loading, virtualization and monitoring. 
Tests performed on the quake module have demonstrate the 
high performance level that is achieved through 
OpenVolcano. 
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