
OpenVolcano: An Open-Source Software Platform for Fog Computing

R. Bruschi*, P.Lago*‡, G. Lamanna§, C. Lombardo*‡, S. Mangialardi*

‡ DITEN - University of Genoa - Genoa, Italy
* CNIT - University of Genoa Research Unit - Genoa, Italy

§ INFOCOM S.R.L. - Genoa, Italy

Abstract—In order to overcome the cloud service
performance limits, the INPUT Project aims to go beyond the
typical IaaS-based service models by moving computing and
storage capabilities from the datacenters to the edge network,
and consequently moving cloud services closer to the end
users. This approach, which is compatible with the concept of
fog computing, will exploit Network Functions Virtualization
(NFV) and Software Defined Networking (SDN) to support
personal cloud services in a more scalable and sustainable way
and with innovative added-value capabilities. This paper
presents OpenVolcano, the open-source software platform
under development in the INPUT Project, which will realize
the fog computing paradigm by exploiting in-network
programmability capabilities for off-loading, virtualization
and monitoring.

Keywords-fog computing; SDN; NFV; personal cloud
services.

I. INTRODUCTION

The present-day Internet is characterized by a number of
devices and communication media that certainly were not
envisaged in the original network design. In particular, the
advent of the Internet of Things (IoT) will further extend the
plethora of available connected objects, bringing their
number, according to Ericsson, up to 50 billion in 2020 [1].
Since such devices are characterized by limited storage and
computational capabilities, their diffusion has led to the
development of a significant number of cloud services to
provide the support needed by smart devices. As a
consequence, new networking and IT architectures are
required that also take into account a more energy/cost
efficient and environmental friendly approach.

The joint adoption of the cloud computing supported by
Network Functions Virtualization (NFV) [2] and Software
Defined Networking (SDN) [3] architectures is considered
a promising solution to promote flexibility and foster the
introduction of new services otherwise unfeasible. This
solution represents the foundation to the Infrastructure-as-
a-Service (IaaS), a realization of the cloud computing
paradigm that provides virtualized computing resources
over the Internet. However, the proper deployment of
similar paradigms is limited by the performance level
currently offered by datacenters, which are located near the
core networks and present end-to-end latencies around two
orders of magnitude higher than the required values.

To address this issue, fog computing has been proposed
[4] by CISCO with the goal of deploying storage,
computing and configuration features closer to the end-user
instead of inside datacenters. This deployment scheme has
three main advantages: i) the reduced distance of the user
from his/her services reduces the end-to-end latency, hence
improving overall Quality of Services and Experience (QoS
and QoE); ii) the deployment of services inside the edge

network allows for better control on the allocation of
physical and logical resources, with the possibility of
applying economies of scale and power management
schemes, and improved privacy; iii) additionally, the
telecom providers can hide the complexity of the underlying
network infrastructure, and hence promote simplified
applications design.

In this respect, the INPUT Project [5] is devoted to foster
Future Internet infrastructures beyond the typical IaaS-
based service models by moving computing and storage
capabilities, from both cloud services and user devices, to
the edge network. This approach will exploit the ability to
directly access network primitives, and will improve
scalability in the interactions of the network with users and
datacenters.

In order to provide scalable and virtualized networking
technologies able to natively integrate cloud services, both
personal and federated, the INPUT Project is realizing
OpenVolcano, an open-source software platform for fog
computing, which will exploit in-network programmability
capabilities for off-loading, virtualization and monitoring.

The paper is organized as follows. Section II focuses on
the deployment of the personal cloud services. Section III
reports the rationale behind the OpenVolcano architecture,
while its control and data plane building blocks are
described in Sections IV and V, respectively. Section VI
provides further details and performance evaluation on
quake, the internal virtual switch. Finally, conclusions are
drawn in Section VII.

II. DEPLOYMENT OF PERSONAL CLOUD SERVICES

The INPUT technologies will enable next-generation
cloud applications to go beyond classical service models
and even to replace physical Smart Devices (SD), usually
placed in users’ homes (e.g., network-attached storage
servers, set-top-boxes, video recorders, home automation
control units, etc.) or deployed around for monitoring
purposes (e.g., sensors), with their “virtual images,”
providing them to users “as a Service”. A virtual image is
defined to be a software instance that dematerializes a
physical network-connected device, and that provides its
virtual presence in the network and all its functionalities.
Virtual images are meant to realize smarter, always and
everywhere accessible, performance-unlimited virtual
devices into the cloud. SDs can be fully or partially
virtualized depending on their constraints on physical
components: sensors cannot be entirely virtualized, since
they still need the hardware to acquire measures and to
transfer them elsewhere. On the contrary, entertainment
appliances can be fully virtualized, and interfaced with
visualization devices (e.g., a television or a tablet) through
standard and well-known protocols. A breakdown of the

2016 28th International Teletraffic Congress

978-0-9883045-1-2/16 $31.00 © 2016 ITC 22

2016 28th International Teletraffic Congress

978-0-9883045-1-2/16 $31.00 © 2016 ITC 22

2016 28th International Teletraffic Congress - The First International Conference in Networking Science & Practice

978-0-9883045-1-2/16 $31.00 © 2016 ITC 22

carbon footprint reduction in presence of partial, full or not
virtualized SDs can be found in [6].

These SDs will be made available to users at any time
and at any place by means of virtual cloud-powered
Personal Networks, which will provide users with the
perception of always being in their home Local Area
Network with their own (virtual and physical) SDs,
independently from their location.

A. The Personal Network
A Personal Network (PN) is a secure and trusted virtual

overlay network composed of standard L2 protocols and
operations equivalent to the ones presently available in the
user’s home network, independent of their location. The
correct routing of the L2 data and signaling packets is
guaranteed by the OpenFlow’s matching/action rules.

PNs are realized by virtualizing typical Network
Functions provided by the user’s home gateway, and
transferring these Virtual Network Functions (VNFs) into
software instances running in commodity computing
facilities deployed in the telecom provider edge network.

As defined by ETSI [7], VNFs can be provisioned either
in a Virtual Machine (VM) environment or via bare metal.
The choice of one solution over the other is driven by the
resources required for a specific network function;
moreover, migration can be less efficient in the presence of
bare metal virtualization because of the need to power on
physical machines, which implies a latency overhead.

Hence, for the design of the VNFs, the evaluation of
whether to implement in a VM or on bare metal will be
made on a case by case basis.

Physical SDs typically connected to the user’s PNs are
fully or partially virtualized through software instances
running at different levels of the edge network
infrastructure. As the use of VMs allows a higher level of
isolation, they will probably be the best candidate for this
deployment.

III. THE OPEN VOLCANO CONCEPTION

In order to allow the deployment of the personal cloud
services as described in the previous section, the edge
network nodes need to be re-thought and re-designed in
order to provide the support for the new cloud services,
including their communication and information exchange.
Among the architectural and logical extensions that they
will undergo, an important role will be played by in-network
programmability, hardware off-loading and power
management capabilities. The architecture that the INPUT
Project has selected as a starting point for the development
of the edge network nodes is the Distributed Router Open-
Source Project (DROP) [8].

DROP was originally designed as a middleware for
realizing extensible multi-chassis Linux software routers on
top of Component-off-the-shelf hardware platforms [9].
During the ECONET Project [10], DROP has been
extended to a SDN/NFV-enabled modular router, with fine-
grained in-network programmability and power
management capabilities exposed by means of the Green
Abstraction Layer (GAL) [11]. Because of these
characteristics, DROP represents a favorable starting point
for the INPUT research activities, which aim to vertically
integrate the networking functionalities with the personal
cloud services support in a scalable way.

In its basic conception, the DROP architecture had been
designed to act as “glue” among a large number of the most
promising and well-known open-source software projects,
providing novel data- or control-plane capabilities.
Throughout its evolution, this characteristic has been
maintained by incorporating the protocols and libraries that
are promisingly contributing to the innovation of the
networking and computing scenarios, such as OpenStack
[12], KVM [13] and libvirt [14].

Thanks to these new features, the architecture has made
a leap from a Linux software router to an open-source
software platform for fog computing. For this reason, the
original name was not suitable anymore for a platform that
has become so different from its starting point. The
OpenVolcano will represent the prototype platform that will
be exploited throughout the INPUT Project lifetime and
beyond to provide scalable and virtualized networking
technologies able to natively integrate cloud services, both
personal and federated.

It is worth noting that this platform presents some
similarities with OpenStack, which in fact is one of the
open-source software projects included in this platform as
explained in the following sections. However, the main
difference is that OpenVolcano is natively conceived to
operate inside fog environments, which guarantees that
service instances will always be physically located in the
proximity of the user, and be deployed and dynamically
migrated according to the user location. In addition, the
performance evaluation is carried out both on the service
QoS/QoE requirements and on energy efficiency.

The main logical building blocks composing the
OpenVolcano architecture, as depicted in Figure 1, are the
StratoV and the Caldera, which represent the control and
the data plane of the architecture. Physically, these building
blocks, and the elements composing them, can be located in
multiple machines spread inside the telecom provider edge
network, in order to guarantee the best allocation of the
applications and functions needed to realize the personal
cloud services. The communication among the various
modules and the stakeholders (users, telecom operator and
cloud service provider) is mainly performed through
RESTful APIs and web interfaces, with additional
OpenFlow (OF) connections and proprietary protocols
when needed.

IV. THE OPENVOLCANO CONTROL PLANE: STRATOV
The StratoV includes the features typically found at the

control plane of an IP router, but it is not limited to them.
As shown in Figure 1, from the functionality point of view,
the StratoV can be divided into three layers, which are
devoted to the collection of the data and their configuration,
the elaboration of the resource allocation and forwarding
rules, and the commit of such rules.

The network manager is physically located in a
remote/separate server, but it belongs to the control plane
architecture in every respect, and more specifically to the
Data Collection and Configuration layer. The network
manager is in charge of the long term
configuration/optimization of the available physical and
logical resources to properly satisfy the bandwidth and
quality levels required by the different cloud services
instantiated over time. In more detail, it has the ability to
collect the monitored data coming from the elements in an

23232323

internal database, which provides a full view of the
deployed services and network states. Thanks to this
information, the Long-term Analytics task allows predicting
service demand, planning resource provisioning, preventing
congestion and possible failures, and maximizing energy
saving.

The database collects the information provided by
OpenStack that regards the users and their subscribed
services. The database has also the ability to detect
modifications in the services subscriptions and notify them
to the control functionalities through a REST interface.

The pyroclast block presents the same functionalities
provided by the OpenStack Nova and Neutron modules. In
more detail, it is exploited by the cloud service provider to
manage the service chains, including the computation and
networking aspects needed for a proper service support.

The Elaboration layer comprehends all of the
functionalities needed to aggregate, elaborate and deliver
the updated physical and logical configuration for the data
plane devices. It is composed of three main modules.

The cinder module is in charge of aggregating the
monitored data and detecting possible faults. This module
can perform synchronous requests for information to the
data plane devices and the network manager and verify the
proper behavior of all network components. The conduit
module can be considered the center of the control plane, as
it is responsible for receiving the information related to
monitoring and services, forwarding it for further
elaboration, and then provide the obtained configuration to
the second control stage.

The crater is in charge of the real-time configuration of
the logical and virtual resources, which can be triggered by
the current users’ location and the monitoring of parameters
like the power consumption or CPU utilization. The data
used to feed this engine come from both the aggregated
monitored information provided by the cinder and the
deployed services as reported by the database. Exploiting
these data, a number of Consolidation and Orchestration

algorithms calculate the optimal resource allocation,
according to the required QoE/QoS and the estimated
workload/traffic volumes, and the OpenFlow rules.

In the case of faults, cinder signals the presence of a
device or sub-element that is not behaving properly to the
conduit, which sends a request to the crater. The device is
then removed from the graph of the available resources and
a new configuration is computed accordingly.

The communication of the re-calculated OF rules and
allocations is managed again by the conduit, which
transmits them to the Commit stage to be further made
available to the data plane elements. Specifically, the OF
rules computed by crater are sent to magma, which provides
the typical OF controller capabilities and is responsible for
updating the flow tables of the elements devoted to
forwarding (e.g., physical and virtual OF switches).

Finally, lava has the ability to abstract the virtualization
libraries deployed at the data plane in order to make them
transparent to the computed resources allocation. In this
way, the rules can be computed by crater without the
knowledge of the virtualization platform (libvirt,
Capedwarf, etc.) deployed on each server.

V. THE OPENVOLCANO DATA PLANE: CALDERA

The Caldera of OpenVolcano represents the data plane
and can be composed of up to four modules. As shown in
Figure 2, the servers in the data plane are connected among
themselves and to the StratoV through OpenFlow switches.

The servers composing Caldera are also built on top of
a Linux architecture. Netlink is used for communication of
the kernel with the user-space, where most of our
implementations take place. In fact, user-space libraries
have been demonstrated to provide massive performance
improvements, at the price of a reduced number of already
available network functionalities with respect to the kernel-
level forwarding [15].

Aside from Netlink, which is mainly used for the
exchange of generic data between the kernel and user-space,

Figure 1. The OpenVolcano Architecture.

DB

Interfaces
Managementemeeeentn

Pyroclast

Caldera

Elaboration

Data Collection
and Configuration

libvirt Capedwarf

Magmaa

Quake

ofp_lib

Crater

boration

Lava
Abstraction Layer

Conduitit

Geyser

Commit

StratoV

Cinder

Cloud Service
Provider

Telecom
Operator End User

User Web Interface

OF Switch

Openstack Web Interface

Web
REST
OF
Other

Interfaces:

Web/REST interfaces

24242424

like requests for acknowledgement, echo or FIB updates,
the other interfaces between kernel and user-space are the
/proc and /dev filesystems. The ACPI [16] standard is
used to represent the power management capabilities of the
hardware components (packet processing engines, network
cards, cores, etc.).

Packets incoming through the NICs are managed by
high performance data packet applications based on DPDK
[17]. All packets received through the NICs are then taken
in charge by the quake module, a software OpenFlow switch
implemented in the user-space according to the OF 1.3
specification, which will be described in more detail in
Section VI. KVM [13] has been chosen to implement the
hypervisor in charge of handling the VMs according to the
directives sent by conduit, as sketched in the previous
section.

The geyser module provides the data related to the
server current status to the crater module after the
aggregation operated by cinder. Such data include the
current energy state (according to the ACPI standard), CPU
load and memory, which can be monitored both globally
and at single process level. The communication is managed
through the GAL REST interface.

The geyser and quake modules are present in every
server composing the data plane, while additional libraries
can be available depending on the deployed service. In the
example reported in Figure 2, libvirt is used to manage VM
migrations, while other libraries such as Capedwarf allow
the management of PaaS instances.

VI. THE QUAKE MODULE

The quake module included in the Caldera has been
designed to manage the received traffic and direct it to the
correct function located in that server. Quake has been
implemented according to OpenFlow Version 1.3, and
provides the protocol’s basic functionalities, such as echo
request/reply, features request/reply, and hello messages.

Quake is an original design of the project, and it has been
implemented by exploiting the DPDK libraries available for
packet capture and for the design of the packet buffers.

In order to overcome the rigid resource allocation of
DPDK, in which the number of threads and their affinity are

set at boot and cannot be modified at runtime, the
introduction of a more flexible affinity has been realized by
exploiting the worker threads: during the initialization
phase, a dispatcher thread, associated with the main core
(usually Core 0), and a number of worker threads are started.
The affinity of the thread is fixed, but the number of active
worker threads can be changed at runtime. The dispatcher
will not use the inactive worker threads.

The internal structure of the virtual switch is shown in
Figure 3. After the initialization, the dispatcher cyclically
queries the Rx queues of the physical and logical ports
waiting for incoming packets. Upon packet arrival, the
dispatcher retrieves the packet from the queue and decides
at runtime the worker thread that will receive the packet.
The designated worker thread is then in charge of matching
the packet header against the OF table using a specific OF
function and determines where to forward the packet. The
possible destinations are the transmission queue of a
physical port (as shown in Figure 3, there is a dedicated Tx
queue for each worker thread to avoid the need for some
synchronization mechanism), or the transmission queue (in
this case, multi-producer) of a logical port. The latter case
regards packets that are directed to the virtualized images of
the personal cloud services, as will be described in the next
section.

The ofp_lib module guarantees the communication with
the magma module located in the StratoV,
generating/receiving the packets and updating the flow
tables.

A. Performance Evaluation
In order to characterize the performance level of the

virtual switch under different traffic conditions, and to
identify current issues and room for improvement, some
tests have been run on our prototype and are reported in this
section. The same tests have also been performed on another
device equipped with Open vSwitch to provide a term of
comparison.

Both devices are built on an Intel Xeon E5-2643 v3
processor with two CPUs and six cores with a working
frequency up to 3.40GHz, and 8 x 8 GB DDR4 2133 ECC

Figure 2. The data plane deployment.

: VMs

: VNFs

25252525

RAM memory. The operating system is Linux version
4.2.6-3 x86_64.

Tests are performed by transmitting traffic to the tested
devices and measuring its throughput using an OptIxia
router tester [18] connected by a couple of 10 Gigabit
Ethernet links, one in transmission and one in reception.
Continuous traffic is transmitted at different offered loads,
growing from 1 Gbit/s to 10 Gbit/s.

In the first test case, the throughput is measured on the
device equipped with Open vSwitch (results labelled as
“OVS” in Figure 4. Throughput percentage measured in
presence of varying packet sizes on the two devices under
test.) and our prototype exploiting the DPDK libraries
(results labelled as “DPDK” in Figure 4).

As expected, the results in Figure 4 show that both
devices present better performance in the presence of longer
packets, with zero-loss throughput for 1518-Bytes packets.
Regarding the device based on Open vSwitch, the decay in
the throughput for packets of 64 Bytes begins immediately,
while for packets of 570 Bytes losses begin at 40% of the
offered load (e.g., 4 Gbit/s) and continue with the same
trend of the smaller sized packets. This trend shows that the
OVS switch can handle a certain number of packets,
discarding all of the traffic above that threshold. This
behavior is confirmed by the results represented in terms of
Gbit/s, as reported in Figure 5, where it can be seen that the
throughput stays constant once packet loss begins.

Regarding our prototype based on DPDK, it
outperforms the OVS-based device for the respective packet
sizes. Considering the results in Figure 4, it can be seen that
the prototype loses visible traffic between 20% and 30% of
the offered load, then throughput starts improving again.
This behavior is due to the fact that the prototype enters a
deep idle state when packets are too separated from each
other. This aspect, however, does not prevent the switch
from outperforming the reference device and will be solved
in the near future.

In the second test case, traffic is not composed of fixed
size packets, but it follows an Internet Mix (IMIX)
distribution [19]. Traffic is also divided in a number of
flows going from 1 to 256, in order to trigger matches in the
switches flow tables. The results of these tests are reported
in Figure 6.

Throughput decreases for both tested devices as the
number of flows grows. However, the differences for the

OVS switch are not very significant, showing that the losses
are more driven by the volume of received traffic, hence
preceding the classification phase. It is worth noting that the
OVS-based switch performs a hash search in the entry table,
hence the time complexity is O(1) and independent from the
number of entries. On the other hand, for the prototype,
losses appear to be proportional to the number of flows, due
to a different choice of the flow table search algorithm that
leads to a time complexity of O(n), and become very severe
above 128 flows, because above that threshold the flow
table becomes too big to be kept in the cache memory.

This behavior is further confirmed by a final
measurement that has been performed under the same
conditions of Figure 6 for 64 flows, but with the addition of
a rule in the flow table that modifies the MAC destination
address. The results can be seen in Figure 7, and show again
that the increased number of operations on the flows
impacts the performance of the prototype but not those of
the OVS-based switch.

VII. CONCLUSIONS

The European Commission-funded INPUT Project is
devoted to foster future Internet infrastructures by moving
computing and storage capabilities to the edge network. The
virtualization of home entertainment appliances and of
sensors, which will be made available to the users as cloud
services, will add potentially infinite smartness and capacity
to devices with performance- and functionality-constrained
hardware platforms.

This paper has described OpenVolcano, the prototype
that will be exploited throughout the INPUT Project lifetime
and beyond to provide scalable and virtualized networking
technologies able to natively integrate cloud services, both

Figure 3. The quake module internal structure.

ofp_lib

Dispatcher
Core 0

Physical Port
M

Logical
Port N

Worker
Thread
Core 1

Worker
Thread
Core N

OF
Table

Logical
Port 0

Physical Port
0

...tx0rx txN txrx txrx

.

.

.

: Datapath
: OpenFlow

. . .

DPDK

. . .

...tx0rx txN

Figure 4. Throughput percentage measured in presence of varying
packet sizes on the two devices under test.

Figure 5. Throughput expressed in Gbit/s measured in presence of
varying packet sizes on the two devices under test.

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
 [%

]

Offered Load [%]

OVS_64 DPDK_64
OVS_570 DPDK_570
OVS_1518 DPDK_1518

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 [G

bi
t/

s]

Offered Load [Gbit/s]

OVS_64 DPDK_64
OVS_570 DPDK_570
OVS_1518 DPDK_1518

26262626

personal and federated. OpenVolcano is an open-source
software platform for fog computing, which exploits the
most promising and well-known open-source software
projects to introduce in-network programmability
capabilities for off-loading, virtualization and monitoring.
Tests performed on the quake module have demonstrate the
high performance level that is achieved through
OpenVolcano.

ACKNOWLEDGMENT

This work has been supported by the INPUT (In-
Network Programmability for next-generation personal
cloUd service supporT) project funded by the European
Commission under the Horizon 2020 Programme (Call
H2020-ICT-2014-1, Grant no. 644672).

REFERENCES

[1] Ericsson, “More than 50 Billions Connected Devices,”white paper,
Feb. 2011.

[2] M. Chiosi, et al., “Network Functions Virtualization: An
Introduction, Benefits, Enablers, Challenges & Call For Action”,
ETSI White Paper, Oct. 2012, URL:
http://portal.etsi.org/NFV/NFV_White_Paper.pdf

[3] “Software-Defined Networking: The New Norm for Networks,
Open Networking Foundation (ONF),” White Paper, Apr. 2012.

[4] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, “Fog Computing and Its
Role in the Internet of Things,” Proc. of ACM MCC 2012, Helsinki,
Finland, August 2012.

[5] “The In-Network Programmability for next-generation personal
cloUd service supporT (INPUT) Project,” URL: http://www.input-
project.eu/.

[6] R. Bolla, R. Bruschi, F. Davoli, C. Lombardo, L. Masullo, “The
Expected Impact of Smart Devices Virtualization ,” 1st Internat.
Workshop on Sustainability, Implementation and Resilience of
Energy-Aware Networks (SIREN 2016), Kauai, Hawaii, USA, Feb.
2016.

[7] ETSI GS NFV, “Network Function Virtualization; Virtual Network
Functions Architecture,” GS NFV-SWA 001 v1.1.1.

[8] R. Bolla, R. Bruschi, C. Lombardo, S. Mangialardi, ”DROPv2:
Energy-Efficiency through Network Function Virtualization,” IEEE
Network, Special Issue-Open Source for Networking: Development
and Experimentation, vol. 28, no. 2, pp. 26-32, Apr. 2014.

[9] R. Bolla, R. Bruschi, “An Open-Source Platform for Distributed
Linux Software Routers,” Computer Communications (COMCOM),
Elsevier, vol. 36, no. 4, pp. 396-410, Feb. 2013. DROP source code
available at https://svn.econet-project.eu/svn/.

[10] “low Energy Consumption NETworks” (ECONET) Project, URL:
http://www.econet-project.eu.

[11] ETSI Environmental Engineering (EE), “Green Abstraction Layer
(GAL) - Power management capabilities of the future energy
telecommunication fixed network nodes,” ES 203 237 V1.1.1, URL:
http://www.etsi.org/news-events/news/822-2014-09-news-green-
abstraction-layer-standard-to-manage-energy-consumption-of-
telecom-networks.

[12] OpenStack cloud computing software platform URL:
http://www.openstack.org/.

[13] Linux Kernel Virtual Machine, http://www.linux-kvm.org/.
[14] libvirt Virtualisation APIs, URL: http://libvirt.org/.
[15] R. Bolla, R. Bruschi, “PC-based Software Routers: High

Performance and Application Service Support,” Proc. of ACM
SIGCOMM PRESTO, Seattle, WA, USA, August 2008.

[16] The Advanced Configuration & Power Interface (ACPI)
Specification - Revision 5.0, http://www.acpi.info/.

[17] The Intel “Data-Plane Development Kit,”
URL:http://www.dpdk.org.

[18] The Ixia XM2 router tester, URL:
http://www.ixiacom.com/products/display?skey=ch_optixia_xm2.

[19] “IMIX (Internet MIX),” Test Methodology Journal, Spirent
Communications, March 2006, URL:
http://spcprev.spirentcom.com/documents/4079.pdf

Figure 6. Throughput measured in presence of a varying number of
flows on the two devices under test.

Figure 7. Throughput measured in presence of a varying number of
flows sizes on the two devices under test.

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
 [%

]

Offered Load [%]

OVS_1 DPDK_1
OVS_64 DPDK_64
OVS_128 DPDK_128
OVS_256 DPDK_256

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
 [%

]

Offered Load [%]

OVS DPDK

OVS_rule DPDK_rule

27272727

