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Abstract—Consortium blockchain is the preferred imple-
mentation form of blockchain for cooperation between enter-
prises. As an indispensable underlying technology of consortium
blockchain, the Byzantine fault tolerant protocol guarantees that
the replicas in network reach agreement even when there are
arbitrary faults of a fraction of the replicas. Byzantine fault
tolerant protocols that currently exist for consortium blockchain
fail to meet the requirements of practical applications, such
as satisfying low algorithm complexity, robustness and dynamic
scalability at the same time. In this paper, a new Fast, Dynamic
and Robust Byzantine Fault Tolerance (FDRBFT) protocol is
proposed to address this problem. It applies random threshold
signature consensus scheme, unique cryptographic algorithm and
proactive recovery scheme to achieve fast agreement, dynamic
scalability and robust system. FDRBFT protocol is implemented
on Hyperledger Fabric and its performance is compared with ex-
isting widely accepted protocols. Experimental results show that
FDRBFT achieves competitive throughput, dynamic scalability
and better robustness.

Index Terms—Consortium blockchain, Byzantine fault toler-
ance, Consensus, Threshold signature, Cryptographic algorithm.

I. INTRODUCTION

Consortium blockchain is the most common type of

blockchain in business applications nowadays [1]. Due to

its restriction on participates who can join the network and

contribute to the consensus of the system state, it provides

protected privacy and fine control over replicas as well as their

data.

The consensus problem is one of the most important

problems in distributed systems. Consensus guarantees that

the replicas in network reach agreement even when there

are arbitrary faults of a fraction of the replicas. Considering

the complexity of consortium blockchain applications in real-

world environment, consensus in these applications must be

able to tolerate Byzantine failures [2]. Under the assumption

that there are no link failures [2], the kind of replicas’ failure

is either a Fail-stop failure or a Byzantine failure. Fail-stop

failures occur when replicas fail by stopping. In the case of a

Byzantine failure, the replicas fail arbitrarily.

Practical Byzantine Fault Tolerance (PBFT) [3] is the most

widely used consensus protocol in consortium blockchain

applications. And this protocol is a milestone in achieving

Byzantine fault tolerance. PBFT can be used in practical

applications owing to its ability to reduce algorithm com-

plexity from exponential to polynomial. With synchronous

setting, PBFT can reach agreement only if f <n/3 (f is the

maximum of faulty replicas, n is the number of all replicas).

However, there are still some problems about PBFT, such as

large communication cost, poor resilience, weak scalability

and time-consuming recovery when a replica is detected to

be faulty [4].

In recent years, the problem of solving consensus in the

presence of Byzantine failures is well-studied and a number of

protocols for Byzantine fault tolerance (BFT) have been pro-

posed to make up for the shortcomings of PBFT. Most of the

researches about BFT protocols in early stages aim at reducing

communication cost of replicas and improving throughput.

However, Bach [5] points out that it is meaningless to measure

a protocol only with its throughput. Subsequent works aim

at eliminating the leader’s effect, since many BFT protocols

depend on a dedicated replica called leader to deliver trans-

actions from client to other consensus replicas, and therefore

the leader replica has a significant impact on throughput. Even

if there exists several mechanisms to detect and recover from

a faulty leader, the process is time-consuming and the leader

could be smartly malicious [6]. For example, it can downgrade

throughput to the detection threshold, without being detected.

Some papers combine dynamic mechanism with PBFT so that

a replica could join or exit the network when other replicas

work normally. And many works propose recovery scheme to

maintain long-term system security. However, none of existing

protocols we are aware of solves the problems of PBFT

simultaneously.

In this paper, a new protocol called FDRBFT is presented

to achieve fast, dynamic and robust Byzantine fault tolerance.

FDRBFT reaches fast agreement by deciding leader and con-

sensus replicas randomly, using 2-phases communication be-

tween consensus replicas and collecting adequate valid thresh-

old signatures. Compared with previous works, FDRBFT

achieves dynamic scalability only by unique cryptographic

algorithm and consensus. A new replica could join blockchain

network by sending request to client. In addition, FDRBFT

employs proactive recovery to maintain long-term system

security. Since the latest version of Hyperledger Fabric project

provides some Application Programming Interfaces (API) to
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customize consensus algorithms, FDRBFT is implemented

based on this project. Compared with existing widely accepted

protocols, we can conclude that FDRBFT achieves competitive

throughput, dynamic scalability and better robustness.

The rest of the paper is organized as follows: we revisit the

methods applied in BFT protocols and analyze their strengths

and weaknesses in Sects.2. We introduce some background

concepts in Sects.3. FDRBFT protocol is presented in Sects.4.

We evaluate the performance of our protocol and compare it

with other widely used protocols in Sects.5. In Sects.6, we

make a conclusion and make suggestions for future research.

II. RELATED WORK

According to our studies and observations, a practical BFT

protocol for consortium blockchain should have three features:

high throughput, dynamic scalability and strong robustness.

Agrawal [7] proposes there are two indicators to measure

a consensus algorithm: (1) round complexity, the communi-

cation cost before the protocol terminates, and (2) commu-
nication complexity, the amount of information exchanged

between replicas during the protocol.

Throughput of consortium blockchain applications is mainly

limited by the communication price between replicas, calcu-

lation cost for encrypting and decoding message for reaching

agreement [8].

A useful way to get high throughput is reducing consensus

steps to reduce communication price. Fast Byzantine Fault

Tolerance (FBFT) in [9] presents a 2-phases consensus, in

the first phase, the leader proposes its value to all acceptors,

then in the second phase, the acceptors accept this value and

forward it to the learners. The typical PBFT protocol includes

3-phases: pre-prepare, prepare and commit [3]. Giving the fact

that commit phase is not necessary, we use a 2-phases con-

sensus in FDRBFT. Bosco [10] achieves one-step Byzantine

consensus. However, strongly one-step could be achieved only

when 7f<n (n is the number of replicas in the system and f
is the maximum of Byzantine faulty replicas) and weakly one-

step also need to satisfy 5f<n. However, practical applications

need higher fault-tolerate ratio. Another widely used method

is random algorithm. Algorand [11] samples some replicas

randomly to execute consensus process according to asset or

computing power of replicas. The more asset or computing

power owned by replica, the more possible it will be sampled.

PBFT relies on leader and view-change for recovering is

time-consuming when leader is detected to be faulty. To

eliminate the influence of leader, Pease [12] uses a random

leader election sub-routine to solve Byzantine agreement with

O(n3) communication and O (1) round. Spin [13] monitors the

execution time of leader, if the time overdue the threshold,

the leader would be replaced. Redundant Byzantine Fault

Tolerance (RBFT) [6] sets two instances with different leader

and compare their throughput. Once the throughput of master

instance is lower than the throughput of backup instance, the

backup instance would replace the master instance. Borran

[14] achieves a leader-free consensus. FDRBFT uses random

leader election to avoid the adverse influence of leader, and

reduces the communication price for recovery. Kursawe [15]

proposes optimistic response mechanism to improve through-

put. However, the performance of protocols with optimistic

mechanisms are not always that good. In some specific cases,

analyzed in [16], they could even be slower than PBFT. In

FDRBFT, we use mature threshold signatures as our optimistic

method. Once collecting enough signatures, the process moves

forward.

PBFT is based on static Client/Server (C/S) structure so

the number and identity of replicas in the network must be

determined before startup and replicas could not be added or

exited dynamically. So some protocols absorb the dynamic

part of other consensus protocols and combine it with PBFT.

Delegated Practical Byzantine Fault Tolerance (DPBFT) [4]

combines the authorization mechanism of Delegated Proof of

Stake (DPOS) [17] and PBFT, supplemented by the downgrade

mechanism with score. And the consensus accounting repre-

sentative can be dynamically updated. The protocol is slightly

concentrated and contrary to the original intention of the

blockchain. The protocol proposed in [18] combines heartbeat

messages of Raft [19] and PBFT. It is usually used for private

and licensed networks. In these networks, a replica could be

a leader, a follower or a candidate. A leader is responsible

for sending copies of history blocks to followers. It would

regularly informing followers its survival by sending heartbeat

messages. A new replica could join the system directly as

a follower to get necessary blocks and public keys of other

replicas. Once information is ready, it can participate in the

next round of leader election. In Bitcoin, a replica in network

could invite a new replica by sending a transaction to the

new replica’s address. Inspired by it, FDRBFT uses unique

cryptographic algorithm to achieve a dynamic authentication

mechanism. This mechanism could control the joining and

exiting of replicas with consensus process, which makes the

network scale easily.

Many BFT protocols could only tolerate one-third faulty

replicas. Therefore we expect that faulty replicas could be

repaired as soon as possible to avoid the situation where the

proportion of faulty replicas exceeds one-third in a certain time

window. FDRBFT uses proactive recovery [20], [21] to ensure

that the system runs stably for a long time. In short, even if

there is no reason to suspect that a replica is faulty, the replica

would be restored periodically.

III. BACKGROUND

A. Byzantine Agreement Problem

Solving the problem of consensus in the presence of

Byzantine failures is known as the Byzantine Agreement

problem [2], its most basic form is defined as follows: Let C

be a consensus protocol among n replicas P = {P1, P2, ..., Pn}.
B is a subset of P (B ⊂ P) and every replica of B is Byzantine

faulty. Each replica Pi starts with an input bit bi, and Pi

outputs a bit ci at the end of the protocol. C is a Byzantine

Agreement Protocol, if it satisfies the following conditions:

(1)Agreement: For any two non-faulty replicas Pi ∈ P and

Pj ∈ P , their output meets ci = cj .
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(2)Validity: If bi = b for all non-faulty replicas Pi ∈ P ,

then ci = b for all non-faulty replicas Pi.

(3)Termination: Protocol C terminates with the probability

of 1.

These conditions also define the safety and liveness
conditions that a distributed consensus algorithm must satisfy.

The agreement and validity conditions compose safety con-

dition: safety will be violated if any two non-faulty replicas

output different values. The termination condition specifies the

liveness condition. If a system continues executing correctly

until it terminates, all replicas must eventually obtain the same

result.

A protocol is said to be f -fault tolerant if it operates cor-

rectly as long as no more than f replicas fail during execution.

According to [12], there is a f -fault tolerant synchronous

protocol to solve the Byzantine agreement problem only if

f < n/3.

B. Cryptographic Primitives

In blockchain network, messages are exchanged between

replicas based on digital signature scheme [22]. The digital

signature scheme (G,S,V) consists of three fast algorithms:

(1)Key generator G: Given a security parameter k, G(k, i)
generates a pair of k-bit keys including a public key pki and

a matching secret key ski for replica i.
(2)Signing S: Given a message m and a secret key ski of

replica i, S(m, ski) produces a signature σi.

(3)Verification V : V takes pki, a message m and a signa-

ture σi as inputs, then V outputs either accept or reject. A

signature is valid only if the V outputs accept.
All signatures produced by S must be valid and

unforgeable. For digital signature scheme (G,S, V ), it is

hard to find signatures σ and σ′, when σ �= σ′, V outputs

accept for both of them with same inputs including public

key pk and message m, i.e.,

σ �= σ′ and V (pk,m, σ) = V (pk,m, σ′) = accept (1)

The protocol proposed in this paper is based on threshold

signature scheme, which is introduced by Desmedt [23], [24].

In an (n, k, t) threshold signature scheme, there are n replicas,

up to t of which may be faulty, k is the threshold of valid

signatures. The replicas who hold ”share” could generate share

signatures on individual messages by using S of digital signa-

ture scheme. At least k share signatures are both necessary

and sufficient to construct a threshold signature. The only

requirement of k is that t < k ≤ n−t. The threshold signature

scheme also consists of three algorithms:

(1)Signature verification SIV : SIV takes a message m,

a signature σ and the public key pk as inputs. Then SIV
determines whether the signature σ is valid.

(2)Share verification SHV : SHV takes a message m, a

share signature on that message from a replica Pi, PK, V K,

andV Ki as inputs. Then SHV determines whether the share

signature is valid.

(3)Share combining SC: Given a message m, k valid share

signatures on m, the public key pk and the verification key

Fig. 1. Blockchain overview

V K, SC would output either a valid threshold signature on

m named as σ(m) or not.

The two basic security requirements of threshold signature

scheme are robustness and non-forgeability. Robustness means

it is computationally infeasible for an adversary to produce k
valid share signatures such that the output of share combining

algorithm is not a valid signature. Non-forgeability means it is

computationally infeasible for the adversary to output a valid

signature on a message. That signature was submitted as a

signing request to less than k − t non-faulty replicas.

C. Ideal Blockchain

Blockchain is a distrusted and shared ledger that multiple

replicas record transactions in a verifiable and permanent

way [1] based on State Machine Replication (SMR) and

Cryptography.

At the beginning of a n-replicas blockchain network startup,

there would be a genesis block B0 to record the initial status of

n replicas. The process of block generation could be broadly

divided into 3 phases [1]: block packaging, consensus and

termination. Let the process of r-th block generation be round

r (r ≥ 1). In essence, the n replicas’ initial status shows as

Eq. (2).

S1 = ((pk1, B0), ..., (pkn, B0)) (2)

Consensus is the core of blockchain because it takes over

90 percent time of block generation process. If TXr is the

set of all transactions produced during round r, TXr would

be packaged into new block Br. In round r, consensus in

blockchain systems aims at collecting adequate replicas’ valid

signatures to prove a new block Br is valid or invalid. Round

r would cost Tr+1 − Tr time and the status of replicas in

network would change as Eq. (3) shows.

r : Sr
Br−→ Sr+1 (3)

If Br is valid, Br along with its proof would consist

Br, then Br would be recorded on shared ledger. The valid

blockchain is actually as follows:

Blockchain = B0, B1, ...Br (4)

The intuitive overview of blochchain shows as Fig. 1

IV. FDRBFT PROTOCOL

To deal with problems of BFT protocols, we propose a novel

protocol which is called Fast, Dynamic and Robust Byzantine
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Fault Tolerance (FDRBFT). FDRBFT combines random al-

gorithm and threshold signature scheme for fast consensus.

A unique cryptographic algorithm is applied in FDRBFT to

achieve dynamic scalability and a proactive recovery scheme

is adopted to restore replicas periodically.

We define the notion of (n, k, t)-random threshold signature

consensus scheme: there are n replicas in network, up to t
(t < 3/n) of which may be Byzantine faulty. k (t < k ≤ n−t)
is the threshold of valid signatures. This scheme consists of

six algorithms:

(1)Key generation G: Given a security parameter b, G(b, i)
generates a set of b-bit keys: a public key pki and a match-

ing secret key ski, a global verification key V K and local

verification keys V Ki for replica i.
(2)Random R: Given an initial status of network

Sr((pk1, Br−1), ..., (pkn, Br−1)) and threshold k, R(k) out-

puts the leader and consensus replicas for round r. R(k)

generate a random binary array randomArray ∈ R
1×n

and a random number j (j < k) at first. randomArray
only includes ”0” and ”1”, ”1” in randomArray means

the corresponding replica own share. The number of ”1” in

randomArray equals k and the number j is used to decide

which replica is leader. For example, when n = 4, replicas =
(P1, P2, P3, P4), t = 1, k = 3, randomArray = (0, 1, 1, 1)
and j = 2, then replicas P2, P3, P4 own share, the replica P3

which is corresponding to second ”1” in randomArray is

leader.

(3)Share Signature generation SG: Given a message m,

a secret key ski of replica Pi and its share (”0” or ”1”), SG
would produce a share signature of Pi named as σi(m).

(4)Signature verification V : V takes a message m, a share

signature σi(m), V K and V Ki as inputs then outputs either

valid or invalid.

(5)Share combining SC: Given a message m and k′ valid

share signature on m, the public keys pki, ..., pkk′ and the

global verification key V K. If t < k′ ≤ n − t and all keys

are right, SC would output a valid threshold signature on m
named as τm.

(6)Collect C: Given k′′ valid threshold signature, if t <
k′′ ≤ n− t, C would output accept, else reject.

Replicas own share in round r are named as ”Sreplicas”,

else ”NSreplicas”. NSreplicas would not take part in the

consensus process. All threshold k, k′, k′′ are in same interval

(t, n − t]. If a given k is close to n − t, then when k′ or k′′

exceeds t, all process would move forward rather than wait

the maximum delay time.

FDRBFT is based on semi-synchronous setting. The trans-

actions from client would not be recorded at once. In fact,

they would be verified by the leader firstly. Then they would

be saved in transaction pool. During the consensus period,

leader would package some transactions from the pool into a

new block with a specific packaging method. The Sreplicas in

round r should be synchronous.

For a round r, the process of consensus includes status, pro-
pose, prepare and collect. During status, replicas in network

would be divided into Sreplicas and NSreplicas. The leader

would be selected from Sreplicas. During propose period, the

leader would pack transactions into a new block Br and sent

proposal of Br to other Sreplicas. Then a Sreplica except

the leader would transfer the proposal to other Sreplicas. In

prepare period, if a Sreplica receives k′ valid share signatures

within the maximum delay time MDT , it produces a valid

threshold signature. As for collect period, if the collector

receives k′′ valid threshold signatures within the maximum

delay time MDT ′, all replicas reach agreement and they

would append Br to their shared ledger. The pseudo code

of consensus shows as Algorithm. 1

Algorithm 1 Random threshold signature consensus

scheme (RTSC)

Input: Params: r, Sr, SK, PK, V K, n, t, k, k′, k′′,
MDT,MDT’;

Fuctions: R,SG, V, SC,C
Output: string accept/reject
initial r ≥ 1, t = �n/3	,k = n− t, k′ = k′′ = 0;

status: leader,Sreplicas=R(k);

propose: transactions leader−−−−→
batch

Br;

σleader(Br)=SG(Br, SKleader, 1);

proposal=(Br, σleader(Br));
foreach i ∈(Sreplicas-leader) do

i
proposal←−−−−− leader;

for Sreplica i has received proposal do
res = V (proposal, V K, V Ki);
time1 = getT ime();
if res == valid then

k′+ = 1;
shareSigi = SG(proposal, SKi, 1);
for Sreplica j �= i and Sreplicaj �= leader do

j
shareSigi←−−−−−− i;

prepare:
foreach Sreplica i do

while getT ime()− time1 ≤MDT do
if i receives a valid shareSig then

k′+ = 1; if k′ ≥ t+ 1 then
thresholdSigi =
SC(Br, k

′shareSig, PK, V K);
break;

collect: time2 = getT ime();
while getT ime()− time2 ≤MDT ′ do

if i receives a valid thresholdSig then
k′′+ = 1;

if k′′ ≥ t+ 1 then
break;
return accept;

return reject;

In essence, agreement would be achieved by Sreplicas with

2-phases communication including propose and prepare, the

communication price is reduced greatly.
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An example is given in Fig. 2 with setting n = 4, t = 1, k =
3, when k′ up to t + 1 = 2 and k′′ ∈ (1, 3], replicas could

reach agreement by only 9 communication times.

1 2 3 4

0 1 1 1

0 v v v

0 1 1 1

�

collector
�

Fig. 2. Example of a n=4 consensus. The red circle is a NSreplica.

Replicas in network verify messages from others based on

the a unique cryptographic algorithm. Because of that, if a

new replica could use this cryptographic algorithm, it would

be recognized by other replicas. The unique cryptographic

algorithm consists of two functions:

(1)Certificate generation CG: CG aims to generate a

certificate certi for a replica i , certi is valid in the near

future time T .

(2)Certificate verification CV : Given a certificate certi of

replica i, CV outputs whether certi is valid.

In consortium blockchain, whether a new replica could

join the network or a replica in network could exit need

to be agreed by other replicas. Giving the fact that replicas

could reach agreement by consensus, consensus described in

Algorithm. 1 (RTSC) is used as the foundation for dynamic

mechanism in FDRBFT. A replica could use a certificate

generation algorithm CG to generate a certificate cert, the

cert is valid within time T . Then the replica could send a

request to client with its certificate. The client would send the

request as a transaction to leader. If the result of consensus is

accept within T , a replica could join or exit the network.

The concrete process is described in Algorithm. 2.

According to Algorithm 1, NSreplicas for round r would

not participant in consensus, which creates favorable condition

for proactive recovery because NSreplicas could be restored

periodically without affecting the consensus process.

The recovery of NSreplicas could be divided into following

steps:

Step1: NSreplicas ask the Sreplicas for checkpoint infor-

mation;

Step2: NSreplicas check whether the blocks information of

the checkpoint is consistent with their own blocks.

Step3: If not consistent, calculate height of blocks which

are necessary to be restored.

Step4: NSreplicas ask the Sreplicas for missing blocks.

Step5: NSreplicas append the blocks to their own shared

ledger.

Step6: NSreplicas update keys by using algorithm G firstly,

then inform Sreplicas about the changes.

Algorithm 2 Dynamic mechanism(DM)

Input: CV,CG,G, replicas,RTSC, b
Output: accept/reject
cert, T = CG(s); time = getT ime(); pks, sks, vks, V K =
G(b, s);
request = (op, cert, s, PKs, V Ks, V K);

client
request←−−−−− s;

transation = request+ σclient

leader
transaction←−−−−−−−− client;

if CV (transaction) �= valid then
return reject;

else
while getT ime()− time ≤ T do

res = RTSC(r);
if res == accept and op == join then

s
(Sr)←−−− leader;

replicas←− (V Ks, PKs);
n = n+ 1;

break;

return accept;

if res == accept and op == exit then

s
(Sr)←−−− leader;

all replicas delete (V Ks, PKs);
n = n− 1;

break;
return accept;

r = r + 1;

return reject;

V. PERFORMANCE EVALUATION

A. Implementation

A blockchain network for evaluating FDRBFT is achieved

as Fig. 3 shows. This blockchain network is implemented

based on an open source project called Hyperledger Fabric.

In this project, pluggable consensus framework for different

protocols is provided. For convenience, Hyperledger Caliper

program is applied as performance benchmark framework.

With a simple smart contract, write TPS (W-TPS) and read

TPS (R-TPS) could both be evaluated. W-TPS is more im-

portant because it reflects the ability of protocols to reach

agreement and record transactions directly. Unless otherwise

specified, the TPS that appears after in this article is W-TPS

by default.

The configuration information for the replicas in our net-

work is shown in Table. I.

B. Performance

In blockchain, TPS and latency are usually used to mea-

sure the performance of protocols. TPS and latency can be
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Fig. 3. The topology of blockchain evaluation network.

TABLE I
REPLICA CONFIGURATION

Items Information
CPU/Memory 4v CPU/16G
Bandwith 8Mbps
Main frequency 2.5GHZ
OS Ubuntu 16.04

calculated by Eq. (5) and Eq. (6) respectively. TPS evaluates

the number of transactions could be successfully recorded by

replicas per second, while latency, whose default unit is mil-

lisecond(ms), measures the time cost from proposal for block

to replicas’ record. In Eq. (6), recordT ime represents the time

when replicas append a new block including transactions to

their shared ledger and requestT ime represents the time when

the leader generates the proposal for new block.

TPS =
success transactions

totalT ime
(5)

Latency = recordT ime− requestT ime (6)

Generally speaking, there are two methods for block pack-

aging. One is packaging by time, transactions would be

packaged into a new block per batchtime. The other one

is packaging by quantity of transactions, every batchsize
transactions would be packaged into a new block.

Packaging by batchsize is more suitable for consortium

blockchain because it achieve parallelization actually. The

bandwidth that one round of communication between replicas

would cost could be calculated by Eq. (7).

To find a suitable batchsize and make the most use of the

bandwidth. TPS and latency of FDRBFT are detected with

different batchsize, the evaluation result is shown in Fig. 4.

bandCost = n ∗ (n− 1) ∗ blocksize (7)

It is observed from Fig. 4(a) that TPS improves with the

batchsize increases when bandwidth is enough. However,

when bandCost is over than bandwidth, then TPS decreases
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Fig. 4. TPS and latency with different batchsize

because of network congestion. Fig. 4(b) shows the delay in-

creases as the batchsize increases because the block needs to

be transmitted between the consensus replicas, the bigger the

block is, the longer the processing time. To sum up, the optimal

batchsize is 300 to 400 because when batchsize ∈ [300, 400],
TPS is optimal and latency growth is within acceptable limits.

By using same smart contract in Caliper, we evaluate TPS of

five protocols including FDRBFT, FBFT [9], PBFT [3], Next

700 [25], and Zyzzyva [26] with different number of replicas

when batchsize is 1, 300, 350, 400 respectively. For each

case, we use one million transactions and count the time these

transactions cost for consensus. TPS is calculated as Eq. (5).

we test each case for 10 times and get its average TPS. The

experimental results are shown in Fig. 5.
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Fig. 5. TPS of 5 protocols with different batchsize and n

As Fig.5 shows, when the number of replicas increases, the

TPS would downgrade because of increasing communication

price. The performance of PBFT is worst because of its O(n2)
communication complexity and O(3) round complexity.

FDRBFT performs best among the five protocols. Because

of random algorithm, the round complexity of FDRBFT is

O(2). With 2-phases consensus, the communication complex-

ity of FDRBFT is O(k2) (k < n). FBFT, Next 700 and

Zyzzyva all achieves O(n2) communication complexity, but

lower round complexity than PBFT.

With batchsize = 300 and batchsize = 350, TPS of

FDRBFT is up to 9000 even when the number of replicas

is 10, it could satisfy the requirement of most applications.
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Fig. 6. Dynimic scalability with adding a new replica

C. Dynamic scalability

With batchsize = 1, n = 4, we test the dynamic scalability

of DPBFT [4], EPBFT [18] and FDRBFT by sending a request

of adding a new replica to the network at the same time (when

time = 5s). According to Sect.5.2, TPS would decrease when

the number of replicas in network increases. For this reason,

throughput is monitored per second to see if the new replica

succeed to join the network. Experimental result shows as

Fig. 6.

In Fig. 6, TPS changes sharply after time = 5s indicates

that the replica has joined the network and could execute the

consensus process normally like other replicas. Fig. 6 shows

FDRBFT could finish the process within just 1 second, while

DPBFT needs 2 seconds and EPBFT takes 6 seconds.

Actually, in a network using FDRBFT protocol, it would

only take some milliseconds for a new replica to join the

network if the transaction including the request could be

packaged into new block at once. That is because our dynamic

mechanism is based on consensus. When the agreement on

transactions could be reached quickly, the network could scale

in a high speed. As for DPBFT, it costs more time because

of communication times used to select voters. In EPBFT,

changing identity of a replica should wait many heartbeat

messages and election messages.

D. Robustness

In Sects.5.2, we demonstrate that FDRBFT has competitive

performance to other protocols in non-faulty case. In this

section, DPBFT, EPBFT and FDRBFT are evaluated from two

aspects in order to verify the security and robustness of them.

On the one hand, we control the number of faulty replicas

in network. On the other hand, we test the reaction of the

network when leader is faulty.

Experiments are carried out under different settings:

(1)n = 4, batchsize = 1, f = 1, leader is not faulty;

(2)n = 4, batchsize = 1, f = 1, leader is faulty;

(3)n = 4, batchsize = 1, f = 2, leader is not faulty;

(4)n = 4, batchsize = 1, f = 2, leader is faulty.

Throughput would be detected to estimate whether the

network works normally. Attacks would happen when time =
10ms.

Two possible attacks are defined according to our settings:

(1)attack-1, when the leader is non-faulty and (2)attack-2,

when the leader is faulty. The result is shown as Fig. 7.
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Fig. 7. Throughput of protocols under two possible attacks

As shown in Fig. 7(a), when attack-1 happens, the curve

of throughput for DPBFT and EPBFT fluctuates, while the

curve of throughput for FDRBFT is relatively smooth. The

most likely reason is that the faulty replica happens to be a

NSreplica. It can be seen from Fig. 7(b) that throughput drops

to zero because other replicas can not receive messages from

leader until the maximum delay time. It is obvious FDRBFT

takes the least time to recover a faulty replica.
When attack-2 occurs, throughout drops to zero because

only two non-faulty replicas could not reach agreement. How-

ever, in Fig. 7(c), the throughput of FDRBFT rises to a normal

level. There might be a situation where one of faulty replica

is a NSreplica in round r, at time = 80ms, the faulty

NSreplica is restored and three non-faulty replica are selected

as Sreplicas in next round r + 1.
According to the results in Fig. 7, FDRBFT shows better

robustness in the face of faulty replicas.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a new protocol called FDRBFT.

With a random threshold signature consensus scheme we

achieve O(2) round and O(k2) communication. The dynamic

mechanism of FDRBFT is based on consensus and a unique

cryptographic algorithm, which allows replicas join or exit the

network quickly under the premise that other replicas do not

stop working. We restore NSreplicas regularly with proactive

recovery mechanism, which maintain the security of network.
Experimental results show that TPS of FDRBFT could be

up to 9000 with batchsize = 300 and batchsize = 350 even

when there are 10 replicas in network. The network scales

quickly and faulty replicas could be repaired in limited time.

Therefore, we can conclude FDRBFT achieves fast agreement,

dynamic scalability and robustness at the same time.
Future work will continue to optimize algorithm details to

further reduce comminication price and the consensus struc-

ture. Furthermore, future work would focus on cryptography to

425



reduce computing price and achieve better security. Anyway,

protocols should be used in a blockchain system which is

in a practical field, and contributes to the application and

popularization of blockchain.

REFERENCES

[1] L. Zhu, H. Yu, SX. Zhan, WW. Qiu and QL. Li, “ Research on
High-Performance Consortium Blockchain Technology–A Case Study
of Decentralized Securities Transaction System,” Journal of Software,
vol. 30, no. 6, pp. 1-18, 2019.

[2] L. Lamport, R. Shostak and M. Pease, “The Byzantine generals prob-
lem,” ACM. T. PROGR. LANG. SYS. vol. 4, no. 3, pp. 382-401, 1982.

[3] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” In: OSDI,
Vol. 99, pp. 173-186, 1999.

[4] X. F. LIU, “Research on blockchain performance improvement based
on Byzantine Fault Tolerance consensus algorithm based on dynamic
authorization,” Zhejiang University, 2017.

[5] L. M. Bach, B. Mihaljevic and M. Zagar, “Comparative analysis of
blockchain consensus algorithms,” In: 2018 41st International Conven-
tion on Information and Communication Technology, Electronics and
Microelectronics (MIPRO) pp. 1545-1550. IEEE, May, 2018.

[6] P. L. Aublin, S. B. Mokhtar and V. Quéma, Rbft, “Redundant byzan-
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