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Abstract—Coordinated approaches between datacenter and
non-datacenter loads in buildings to achieve energy efficiency
have been widely studied in recent years. However, the
coordination-enabled mechanisms still leave much room to be
optimized for the following reasons. First, in the new trend of
cloud computing networks, datacenters are pushed to the edge
of networks to reduce latency (they are called edge datacenters).
Such datacenters are often deployed in geographically distributed
buildings and collocated with offices in terms of sharing building
infrastructure; such buildings are called geo-distributed mixed-
use buildings (geo-MUBs). That scenario has not been well ad-
dressed in terms of energy sustainability requirements overall in
the buildings; the requirements are imposed either by mandatory
government orders or by LEED certification. Second, one critical
issue of datacenters is water saving, which is rarely associated
with energy efficiency, even though every kilowatt of energy
consumption can reflect exactly an amount of water use in
datacenters. Therefore, in this paper, we aim to find a solution
for joint energy scheduling and water saving problem (PJEW) in
a coordinated manner between MUBs. The solution is designed
to schedule workloads by coupling edge datacenters collocated
in buildings as well as to control energy and water usage to
minimize the system cost caused by reducing loads. We advocate
the model predictive control (MPC) to schedule the whole system
in a time horizon. Multiple simulation scenarios are evaluated
to show the efficiency of our proposed methods compared to
conventional approaches. The results reveal that our mechanism
outperforms the uncoordinated methods and achieves a nearly
optimal solution.

Index Terms—Demand Response, Mixed-Use Building, Geo-
graphically Distributed Datacenters.

I. INTRODUCTION

A challenging issue when building smart cities with efficient
and reliable energy systems is to optimize the energy demands
of buildings; it is being addressed in the smart grids. According
to [1], buildings exhaust for nearly 40 percent of the U.S.
primary energy consumption and 70 percent of the electricity
use. Even though existing solutions improve building energy
efficiency via several methods, for the energy optimization for
buildings, many problems still exist that need to be tackled
both by businesses and in the literature. In particular, over-
looking energy issues in buildings, prior works have omitted
or not addressed well the important aspect: the relationship
between energy and water use in the colocation scenario,
in which multiple loads (e.g., datacenters [DCs], offices) are
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collocated in a building, in which they share facilities such
as electric lines, heating, ventilation, and air conditioning
(HVAC) systems [2]. Such a colocation scheme has received
much attention in research for the following reasons. First,
colocation of energy loads occurs in a building with a shared
infrastructure, called a mixed-use-building (MUB) [3], in
which the building operator needs efficient mechanisms to
answer both energy and water demands of all colocation loads.
Currently, datacenters already account for over 2% of all
energy usage, and a majority of datacenters are located in
MUBs. It is estimated that MUBs with datacenters take up
about 4% of the total energy usage [3]. Importantly, as highly-
distributed edge datacenters are becoming increasingly more
pervasive to host latency-critical Internet of Things applica-
tions, MUBs with datacenters onsite will also experience a
rapid expansion. Second, as presented in [4], datacenters are
not only “hungry” for energy, but also “thirsty” for water to
operate their systems, where millions of gallons of water are
required for cooling and electricity production. Nevertheless,
prior works on datacenters often focus separately on energy
or water problems without considering a coupling scenario
for those demands. Finally, many developers and owners are
currently seeing MUBs as an opportunity for energy efficiency
in relation to building efficiency and sustainability. Buildings
are further leveraged to achieve green certifications (e.g.,
through the LEED program [5]). Especially, colocations of
MUB architectures are suggested for dense metropolitan areas,
where green programs are critical for cutting loads at peak
demand times [6].

To find a solution for MUB architecture with datacenters,
optimization mechanisms are not now being well addressed,
as datacenter infrastructures have become smaller and more
distributed. Because of the small size of infrastructure, multi-
ple loads in MUBs can be easily collocated within a building
and share building infrastructures. Indeed, with smaller infras-
tructures, each energy load in an MUB (whether datacenter or
non-datacenter) may not shed sufficiently amount of reduction
energy required by green programs, such as demand response
(DR) programs and the LEED certificate. Furthermore, those
loads cannot directly participate in such green programs
because the grid can monitor only the building’s power,
not individual loads to apply traditional approaches, as in
dedicated datacenters.

Last but not least, existing optimization models focus
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mainly on individual energy or water model in datacenters
and buildings. While energy source can be clearly seen as a
coupling aspect on those loads, the water source appears to be
a hidden one with few concerns in MUBs. For example, prior
works on buildings [2], [3] considered the energy optimization
of all loads in the MUB including the HVAC system; but
they did not exploit the relationship between energy and
water in the MUB. The discussion in [7] mainly concerns
the water issue in geo-distributed datacenters, whereas edge
datacenters are now colocated with offices in shared building
infrastructures. The more energy a building uses, the more
water it needs to alleviate the building heat by operating the
cooling system.

In this paper, we consider the problem of joint energy
and water saving in a geographically distributed mixed-use
buildings (geo-MUBs) scenario. We mainly target a joint
energy sustainability and water saving strategy in terms of
capturing workload distribution and energy and water use of
all colocation loads in all buildings. In particular, the presence
of edge datacenters spatially couples different buildings in
different locations as a result of geographic load balancing
capability. In addition, the concern with colocation office loads
will be to give a dynamic and flexible control load in buildings
overall. Using a joint energy sustainability and water saving
strategy, we specifically involve a scheduling mechanism to
operate the whole system in a time horizon. Furthermore,
an energy capping is used to enable remarkable benefits for
MUBs imposed either by mandatory government orders or by
LEED certification [7]. Furthermore, we propose a distributed
mechanism for MPC based on the dual decomposition frame-
work [8] where the computation is executed in a distributed
manner.

A summary of the major contributions of this paper follows:

• We formulate an optimization problem for scheduling
multiple loads in geo-MUBs (called PJEW) to minimize
the total cost incurred in the system while satisfying the
energy sustainability constraint.

• We develop an offline distributed algorithm to solve
PJEW based on the dual decomposition framework,
whereby we can schedule the energy load, water use and
datacenter workloads in a time horizon, called JEWAS-
OF (the offline algorithm for joint energy scheduling and
water saving). Further, to address PJEW with uncertainty
workloads, we propose an online algorithm derived from
JEWAS-OF, called JEWAS-ON.

• We conduct the performance of our method using a real
trace of workloads in a time horizon. The simulation
results show that our approach can achieve substantial
cost saving for the whole system compared to current
practices.

The rest of this paper is organized as follows. Section II
summarizes some of the current approaches related to build-
ing energy management in the literature. In Section III, we
introduce the system model and the problem formulation of
the geo-MUB system. Section IV presents the design of MPC
with certainty/uncertainty demand workloads. We perform the
simulation to evaluate the system in Section V. Finally, we

conclude the paper in Section VI.

II. RELATED WORK

Recently, several green programs have paid attention to
particular buildings and datacenters, such as DR, LEED.
Without considering the colocation scenario, non-datacenters
in buildings can reduce the power consumption through global
thermostat setpoint setback control, supply air temperature
adjustment, pre-cooling, and use of a discharging energy
storage device (e.g., battery) [9]–[11]. Focusing on the HVAC
system in buildings has received much attention in business
and research since HVAC consumes most power in buildings
[11]–[13].

Unlike regular buildings, MUBs are a specific kind of
buildings in which multiple loads coexist and share building
infrastructures. Especially, the datacenter load is an important
factor that creates several concerns for MUBs to optimize en-
ergy consumption. For conventional datacenters, many energy
optimization approaches have been proposed and implemented
in real systems by consolidation [14], scaling down CPU
frequencies [15], dynamically turning on/off servers in owner-
operated datacenters [16], [17] and performing load balancing
of the workloads [18]. Because they own all the infrastructure
from IT workloads, servers and network systems to the cooling
system, dedicated datacenters have many control knobs to
help reduce energy use [19]. Unfortunately, these methods
are difficult to apply directly in MUBs since MUB loads
are often too small to individually reduce energy for green
programs. MUBs now need efficient and dynamic coordination
approaches to control overall loads in a building as well as in
remote buildings.

In the first study on the coordination approach in MUBs,
the authors of [3] proposed a cost-effective method in DR
via coordinated energy management. This work investigated
the concept of MUBs and illustrated the effectiveness of
coordinated energy management compared to individual load
control. We continue and develop this approach with an
incentive mechanism that distributes shedding energy reduc-
tion to each MUB tenant in order to minimize the total
incurred cost [20]. Despite having achieved the minimum total
cost compared to the state-of-the-art methods, these proposed
mechanisms do not focus on coupling multiple loads in geo-
MUBs, in which edge datacenters can be located in different
buildings at different locations because of the geographical
load balancing capability. An important aspect, water saving,
which is non-trivially related to the energy usage in buildings,
has not been addressed well. As a result of the colocation, a
building operator has to supply efficiently the power demand
as well as the water demand of all building loads, which
has recently become a substantial issue [4], [21], [22]. The
mutual relationship between energy and water makes the joint
energy-controlling and water-saving problem more critical and
significant when building operators are trying to achieve green
building certifications (e.g., the LEED certificate).

III. SYSTEM MODELING

We consider a typical geo-MUB scenario that includes I
sites with different electrical utility service regions where
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Fig. 1: The system model of geo-MUBs.

MUBs are located. Our proposed model is formulated to target
overall joint energy sustainability and water saving in buildings
during a time horizon T . At an MUB, the datacenter i is
colocated with a set of non-datacenters (offices). All energy
loads (i.e., from datacenters to non-datacenters) in a building
are managed by the MUB operator and share the electricity,
HVAC and the backup system (including a fuel generator and
an energy storage). We consider the MUB energy usage is
daily consumption by a per-day energy cap constraint (it will
be explained later). Therefore, we schedule energy and water
consumption of all loads in 24 hours such that all loads can
satisfy an energy cap imposed by green programs in advance.
The system model is depicted in Fig. 1.

A. Energy consumption for HVAC load in MUB

In this paper, we consider a share HVAC system in each
MUB, including water pump, chiller and cooling tower. The
thermal load in an MUB is refreshed via heat exchange from
chiller water and supply air. We consider the amount of
thermal load in building i as follows [23]:

Hi(t) =
[
TDCi (t)− T supDCi

]
rDCi (t)ci

+
[
TOfi (t)− T supOfi

]
rOfi (t)ci, i = 1, 2, ..., I, (1)

[T chwi − T supchw]rchwi (t)cwi + [T cwi

−T supcwi ]rcwi (t)cwi ≥ Hi(t), i = 1, 2, ..., I, (2)

where TOfi (t), TDCi (t) denote the temperature in offices and
in datacenters of MUB i at time t, respectively; T supDCi

and T supOfi denote the supply temperature in datacenters and
offices of MUB i, respectively; rDCi (t) and rOfi (t) denote the
air flow rate in datacenters and offices and ci denotes the heat
capacity of air in MUB i; T chwi , T supchw, T cwi , and T supcwi

denote the return and the supply chilled water temperature,
the return and the supply condensed water temperature, re-
spectively; cwi denotes the water capacity. Those parameters
are given in our model for the heating calculation.

At timeslot t, the building i needs to alleviate the amount
of heat Hi(t) by controlling the flow rate of the chiller

water rchwi (t) and condensed water rcwi (t). Following [23],
the amount of energy demand for HVAC is consist of the
chiller water echw(rcwi (t)) the pump system epump(rchwi (t))
and the tower etow(rcwi (t)). These energy loads are calculated
according to the flow rate of chiller water and condensed
water [23]. Specifically, we present all the calculation and the
constraints of the HVAC system as follows:

ehvaci (t) = echwi (rcwi (t)) + epumpi (rchwi (t)) + etowi (rcwi (t)),

i = 1, 2, ..., I.
(3)

echwi (rchwi (t)) = α0 + α1r
chw
i (t) + α2r

chw
i (t)2 + α3r

chw
i (t)3,

(4)

epumpi (rchwi (t)) = β0 + β1r
chw
i (t) + β2r

chw
i (t) + β3r

chw
i (t),

(5)

etowi (rcwi (t)) = γrcwi (t)3,
(6)

with α0, α1, α2, α3, β0, β1, β2, β3 and γ are coefficients. From
(1) to (6), these constraints illustrate how the building heat is
refreshed and the relation between the building thermal load
(Hi(t)) and the chilled and condensed water flow rates in
building i.

According to ASHAE [13], the best guide for temperature
setting of offices is from 18oC to 27oC and the maximum
humidity is 60% for our simplified assumption under summer
conditions.

B. Edge datacenters in MUBs

Traffic workloads and network constraints. Suppose that
each MUB datacenter i consists of Si servers, which are
assumed to be homogeneous in this work. An MUB datacenter
with heterogeneous servers can be viewed as multiple virtual
datacenters, each having homogeneous servers. In general,
each MUB datacenter deals with two types of workloads:
delay-sensitive workloads, such as Internet services, and
tolerant-batch workloads, such as indexing data, consolidation
system. The response time of delay-sensitive workloads is
strictly imposed (usually in milliseconds), while delay-tolerant
workloads can be scheduled to run at any time as long as they
can be finished. We formulate the constraints of workloads as
follows.

For delay-sensitive workloads, the total incoming workloads
Λ(t) is driven to the main controller (called the geo-MUB
controller), who receives the requests from users in a specific
scheduling period T . We define a parameter λi(t) as the
amount of interactive workloads distributed to datacenter i at
timeslot t, satisfying the following load balancing constraint:∑I

i=1
λi(t) = Λ(t), t = 0, ..., T − 1. (7)

For delay-tolerant workloads, let bi(t) and b̃i(t) denote
the number of batch workloads requested and the number
of batch workloads being served at datacenter i at timeslot
t, respectively. In this work, following prior studies [24]
and [2], we suppose that the delay-tolerant workloads are
not migrated to other datacenters because of their expensive
migration cost. Since this type is the deferrable workloads, the
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constraint to fulfill the demand of delay-tolerant workloads can
be formulated as follows:∑T−1

t=0
bi(t) =

∑T−1

t=0
b̃i(t), i = 1, ..., I. (8)

Energy consumption of MUBs. Inspired by the calcula-
tion in [25] and [26] that represents the power consumption
depending on server utilization, we assume that all workloads
driven to datacenter i will be evenly distributed to all active
servers. Hence, the energy of MUB datacenter i at time t to
serve the amount of demand workloads di(t) := λi(t) + bi(t)

is as follows si(t)
(
pi,s + pi,a

di(t)
si(t)µi

)
PUEi, where si is

the number of active servers at slot t for serving demand
workloads, pi,s and pi,a are the static and active powers of
each server at MUB datacenter i, respectively, µi is a server’s
service rate measured in terms of the amount of workloads
processed per unit time at datacenter i, di(t)

si(t)µi
is the server

utilization at time t and PUEi is the power usage effectiveness
of datacenter i, which is measured by IT plus non-IT power
consumption divided by IT power consumption. Therefore, the
total energy allocated for serving the demand workloads is
calculated as follows:

eDCi (di(t)) = si(t)
(
pi,s + pi,a

di(t)

si(t)µi

)
PUEi,∀i ∈ I. (9)

The service-level agreement (SLA) constraint in MUB
datacenters. Consider that MUB datacenter i at timeslot t
is serving the demand workloads with b̃i(t) = 0. Using the
M/M/1 queue model, the constraint of datacenter i’s delay-
sensitive workloads is as follows:

1

µi − λi(t)
si(t)

≤ Di, (10)

where Di is the SLA threshold at MUB datacenter i. The
constraint corresponds to the maximum delay of the tolerant
workloads at MUB datacenter i. This formulation of the SLA
constraint is widely used as a measurement of quality of
services (QoS) [2], [7], [17], [25]. When reducing the power
consumption by switching off servers, the controller has to
guarantee the SLA constraint (10). From this constraint, we
can derive the threshold of the number of active servers in
MUB datacenter i as follows:

si(t) ≥
λi(t)

µi − 1/Di
:= si(t). (11)

Combining (9) and (11), the minimum power demand at
MUB datacenter i is bounded as follows:

eDCi (di(t)) ≥
(
si(t)pi,s +

pi,adi(t)

ui

)
PUEi, i = 1, 2, ..., I

(12)

C. The backup system

We consider multiple factors of the backup system that
include a fuel generator and an energy storage unit (e.g., a
battery). In order to prevent a power outage disaster, having a
backup system in place is required to provide buildings with

temporary power during an emergency. We define eb+i (t) and
eb−i (t) as the discharged and charged energy from the battery
at time t, respectively. Let Lbi (t) be the level of the battery
at time t. The dynamics of the storage unit are represented as
follow:

Lbi ≤ Lbi (t) ≤ L̄bi , (13)

Lbi (t+ 1) = Lbi (t) + eb+i (t)− eb−i (t), (14)

Lbi (T − 1) ≥ Lbi (0), (15)

|eb−i (t)| ≤ κ, (16)

eb+i (t), eb−i (t) ≥ 0. (17)

Constraint (13) indicates the limitation level of the battery in
charging and discharging. Constraint (14) shows the dynamic
level of the battery in our scheduling. And (15) states the
balance in our system, where the battery should be recharged
at the end of the schedule or at least, its power should be
equal to the initial level Lbi (0). Finally, (16) reflects the time
constraint of energy level in charging/discharging the battery,
where for each timeslot, the battery can charge/discharge up
to κ.

Furthermore, we consider the fuel backup generator in
which we use ebgi (t) to define the power supplied from the
fuel generator at time t in building i. For ease of notations, we
define ei(t) := enonDCi (t)+eDCi (t)+eb−i (t)−ebgi (t)−eb+i (t),
where enonDCi (t) := ehvaci (t) + emisi (t), with emisi (t) is the
energy of miscellaneous purposes of offices in building i at
time t. This parameter (emisi (t)) is given in our model (i.e.,
it means that the system needs to collect the value of every
timeslot t).

In this work, miscellaneous loads are defined as any load
that depends mainly on the occupant behaviors and can be
gathered based on traditional methods [27], [28]. Due to the
unimportant load, these loads are the given input parameters in
our model in every timeslot. Even though the system does not
need to predict those given parameters, the varying miscella-
neous loads during T timeslots that capture the reality of the
environment raise challenges for scheduling methods to adapt
to the dynamic system. Therefore, the input miscellaneous
loads are the considerable value in our work.

D. MUB water: on-site direct water usage

It is difficult to measure the water-usage statistic for data-
centers in both research and practice. This issue seems more
difficult in terms of colocation for the following reasons.
First, all datacenters use energy, but not all use water. Among
of those that use water, the amount of water use depends
on the cooling system, which is equipped in datacenters or
buildings for heat rejection. The more energy used, the more
heat needs to be rejected. The amount of water usage in the
cooling system reflects the amount of energy usage, but it is
also affected significantly by the outside environment (e.g.,
temperature, humidity). Second, the quality of water usage
cannot be easily equated; some datacenters use fresh water,
“gray water” or even saltwater. Finally, in the shared scenario
of colocation, water may be used for various purposes that do
not reflect exactly the amount of water used by datacenters.
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These difficulties have led to a few reports on water saving
for datacenters and state-of-the-art buildings.

In general, our work assumes that a cooling system exists
in every building and that it is shared for all loads. Hence, the
on-site direct water consumption in a building is from cooling
towers and miscellaneous purposes. Following [4], we use the
coefficient parameter Water Use Effectiveness (WUE), which
is considered the industry standard in measuring datacenter
water use. In particular, WUE is a metric developed by The
Green Grid to help data centers measure the ratio of total water
consumption to IT energy usage. A higher WUE ratio implies
a more intensive use of water in datacenters. The WUE of
one building differs from that of others for multiple reasons,
but mostly because of different cooling systems. Specifically,
cooling towers are deployed in datacenters for heat rejection
with two major factors that impact water consumption, namely,
water quality [7] and water evaporation. Because our scenario
occurs in a city, we assume that all the buildings have the
same water quality. Another factor-affecting the cooling tower
is water evaporation, which is highly determined by the outside
wet bulb temperature. Based on an industry experiment [29],

Fig. 3 shows the impact of outside wet bulb temperature on
WUE. It illustrates clearly the increase of WUE when the
outside wet bulb temperature increases (because the high-
temperature results in a high loss of water though evaporation
into the air).

Given a cooling system, we assume that building i can
directly measure WUE in every timeslot t based on the
calculation with the outside wet bulb condition [29]. We define
the WUE function for each building as follows:

WUEi(t) =
c

c− 1
[6.10−5(T bi (t))3 − 0.01(T bi (t))2

+0.61T bi (t)− 10.40], (18)

where ci is the cycle of concentrations and T bi (t) is the outside
wet bulb temperature at building i.

To calculate the water usage in buildings, we define ωi(t)
as the amount of water usage at MUB i, where the water use
in buildings is from i) the cooling system depending on the
energy usage as well as the outside condition as presented in
[4], and ii) the amount of water usage for miscellaneous pur-
poses, such as irrigation and toilet flushing, etc. Consequently.
we formulate the MUB water usage in MUB i as follows:

ωi(t) = ei(t)WUEi(t) + ωmisi (t), (19)

where ωmisi is the water usage for miscellaneous purposes.
Similar to the miscellaneous energy load, the miscellaneous
water usage ωmisi is given in our model. Consequently, (19)
reflects the dependency of water usage on both energy con-
sumption in a building and the outside temperature. Hence,
MUB energy management needs to be temperature-aware,
whereas the existing energy management systems tend to
ignore water consumption that is obviously in relation to
temperature.
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E. Operational costs

There are multiple factors in our joint optimization problem.
We apply the weighted sum [30] to model the geo-MUB
problem. With aforementioned notational conventions, we
formulate the geo-MUB load management in terms of reducing
the system cost as follows

Ci(t) =PnonDCi enonDCi (t) + PDCi eDCi (t) + P b+i eb+i (t)

+ P b−i eb−i (t) + Pωi ωi(t) + P bgi ebgi (t),∀i = 1, ..., I.
(20)

where PnonDCi , PDCi , P b+i , P b−i , Pωi , and P bgi are the weight
factors that reflect the importance of non-datacenter load
energy, datacenter energy, discharging and charging energy,
water and the fuel backup system respectively in MUB i at
time t. As represented in (20), the system cost in geo-MUBs
is caused by the amount of energy and water use as well as
how the backup system is handled.

Note that: the cost in (20) reflects a dynamic control in
our model, in which we can scale the system as a green
load balancing datacenters’ points of view to a coordination
of multiple load scenarios in MUBs by adjusting the weight
parameter (the impact of the weighted parameters will be
discussed concretely in the simulation section).

F. Mixed-Use Building management

With aforementioned formulations, we provide a flow model
for geo-MUB management in Fig. 2. We design the system
with multiple related components, each of which has a specific
responsibility, while they communicate through the Internet or
a private network.

Mixed-use building manager module. At the top of the
model, we implement a mixed-use building manager module
as the main controller that can carry out the optimization
algorithm to answer the queries from lower components,
such as the workload management component, the energy
management component, the HVAC component and the water
management component. These management components are
implemented in all MUBs. Controlling information can go
through the northbound interface to communicate between
the controller and MUBs. The controller receives information
about the workload arrival rate (from the workload com-
ponent), energy demand from office equipment, the energy
level of the battery (from the energy management compo-
nent), the temperature, and humidity in offices (from the
HVAC component) and the water condition (from the water
management component) in the buildings. By executing the
optimization algorithm, the mixed-use building manager will
answer how many workloads can be scheduled at datacenter
i, the amount of energy needed to handle the IT loads, HVAC
and miscellaneous loads, and the amount of water usage at
each MUB in every timeslot.

Workload management module. This scheduling work-
load module manages the workloads in our system, including
the delay sensitive workloads, {λi(t)}, and batch workloads,
{bi(t)}. Based on the arrival rate workloads planned by the
MUB manager, this component will operate workloads at the

datacenter, such as operating a number of active servers, and
scheduling and executing workloads.

Energy management module. This module is responsible
for managing the energy demand from datacenter opera-
tion, {eDCi (t)}, office equipment, {emisi (t)}, HVAC system,
{ehvaci (t)} and the backup system, {ebgi (t), e

b+/−
i (t)}.

HVAC module. In order to handle the HVAC system,
this module is responsible for collecting the information of
temperatures in datacenters, {TDCi (t)}, offices, {TOfi (t)},
setting temperatures, {T supDCi , T supOfi }, the air flow rates,
{rcwi (t), rchwi (t)}, to control the heat in the buildings.

Water management module. This module is responsi-
ble for managing the water usage in a building, including
the amount of water usage for HVAC system whvaci (t) :=
ei(t)WUBi(t) and miscellaneous purposes {wmisi (t)}.

All management components in our model use the south-
bound interface to communicate in operation. Even though
each component is responsible for a different task, they need
to communicate in order to handle the shared infrastructure
of the geo-MUB scenario. For example, to handle an amount
of workload, the workload component needs to operate si(t)
active servers, which require an amount of energy supplied by
the energy management component. Furthermore, this number
of active servers results in increasing/decreasing the heat
in datacenters; therefore the HVAC component is asked to
adjust its air flow rates. To simplify our system, each model
can be considered a black box that communicates to others
through APIs. The execution strategy of each module operates
transparently in relation to others.

G. Problem formulation and challenges

With all aforementioned constraints, we take into account a
scheduling scheme in which the controller makes a decision
for energy consumption and water usage in geo-MUBs during
period T for cost saving. The problem is formulated as
follows:

PJEW : min

T−1∑
t=0

I∑
i=1

Ci(t) (21)

s.t. HVAC constraints (1) - (6),
T−1∑
t=0

I∑
i=1

ei(t) + ebgi (t) + ebi (t) ≤ Q, (22)

∑I

i=1
λi(t) = Λ(t), t = 0, ..., T − 1, (23)∑T−1

t=0
bi(t) =

∑T−1

t=0
b̃i(t), (24)

eDCi (di(t)) = si(t)
(
pi,s + pi,a

di(t)

si(t)µi

)
PUEi,

(25)

si(t) ≥
λi(t)

µi − 1/Di
:= si(t), (26)

eDCi (di(t)) ≥
(
si(t)pi,s +

pi,adi(t)

ui

)
PUEi,

(27)

Lbi ≤ Lbi (t) ≤ L̄bi , (28)
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Algorithm 1 JEWAS-OF: Distributed algorithm for PJEW

1: Initialization: Set ε1, ε2 and input parameter s;
2: At each timeslot τ, τ = t, ..., t+ T ;
3: Initialize k = 0, υ(0), φ(0);
4: repeat
5: k ← k + 1;
6: Each operator i receives υ(k), and φ(k);
7: Compute x(k)i by solving P2;
8: Send x(k)i to the controller of building i;
9: Operator updates υ(k+1), and φ(k+1) by (40) and (41);

10: until ‖υ(k) − υ(k−1)‖2 < ε1 and ‖φ(k) − φ(k−1)‖2 < ε2;

Lbi (t+ 1) = Lbi (t) + eb+i (t)− eb−i (t), (29)

Lbi (T − 1) ≥ Lbi (0), (30)

|eb−i (t)| ≤ κ, (31)

ωi(t) = ei(t)WUEi(t) + ωmisi (t), (32)

eb+i (t), eb−i (t) ≥ 0, (33)
i = 1, ..., I,

where Q in (22) is the limitation of the energy consumption
allocated for geo-MUBs during period T . The total energy
consumption constraint can be interpreted as an “energy cap”,
which is used to formulate a highly-desired sustainability
issue in MUBs (e.g., due to government orders, the LEED
certification, etc.). With this kind of sustainability issue, the
energy capping is represented by the amount of per-day energy
cap [24] through converting allocating the monthly energy cap
into a daily cap. However, this inequality constraint (22) can
be relaxed to the equality constraint because every curtailing
strategy always decreases the performance of MUB loads or
increases the system cost created by the backup system.

In PJEW, we aim to pursue an online management during
time horizon T for energy, water and workloads in a coupling
scenario of different buildings in different locations because
of the geographic load balancing capacity. The complexity of
PJEW increases exponentially when T is increased, and this
is a critical challenge for every powerful solver.

IV. MPC SCHEDULING PROBLEM

In Section III, we account for optimizing the total
operational cost during T timeslots. It implies that in the
finite horizon, the operational cost must be minimized,
subject to IT operational constraints (i.e., the constraints
of demand workloads), thermal settings, as well as
the limitation of energy usage constraint. We consider
all sources of randomness as the state vector s(t) :=
{Λ(t), bi(t), e

mis
i (t), TDCi (t), TOfi (t), ωmisi (t),WUEi(t)}

and also denote all the optimization variables as the vector
xi(t) := {λi(t), ei(t), b̃i(t), ebgi (t), e

b+/−
i (t)},∀i ∈ I. For

ease of notations, the cost function of each building i at
timeslot t is re-written as follows: gi(xi(t)) := Ci(t).

Invoking the main concept of the MPC method, we relax
PJEW to solve the deterministic problem over a planning
horizon from current time t to t + T . Even though MPC

t=0

T

MPC(x0,s0)

MPC(x1,s1)t=1

MPC(x2,s2)t=2

Input s0 Predict s1,s2…,sT

Fig. 4: The iteration-based mechanism of MPC.

is heuristic, it has some benefits, such as the simplifica-
tion of complexity and more practical implementation than
the dynamic programming method, where the computational
complexity of the dynamic programming algorithm increases
exponentially with the dimensionality of the state [31]. The
main advantage of MPC is the iteration-based mechanism
with a finite-horizon optimization of a scheduling model. At
time t, it uses the current plan to sample, and it optimizes a
control strategy for a relative time horizon [t, t+ T ]. Relying
on iterative, finite-horizon optimization, MPC can simplify the
complexity of calculation for solving complex problems, when
the number of variables exponentially increases depending on
the number of timeslots. It can be seen as a proper choice for
solving PJEW; even though MPC in fact cannot guarantee
an optimal result for the current timeslot, it does take future
timeslots into account.

To tackle the online problem PJEW, we execute iteratively
the MPC scheduling until the system reaches the end timeslot,
as illustrated in Fig. 4.

At each timeslot t, the controller creates a schedule for x
from the input parameter s(t) and predicting parameters s(t+
1), s(t + 2), ..., s(t + T ). Hence, PJEW can be reformulated
following MPC-based scheduling as follows:

min
T∑
τ=t

I∑
i=1

gi(xi(τ)) (34a)

s.t HVAC constraints (1) - (6), (34b)
T∑
τ=t

I∑
i=1

ei(τ) = Q(t), (34c)

(23)− (33),

where gi(xi(τ)) := Ci(t), and the inequality constraint (22)
can be relaxed to the equality constraint (34c) because every
curtailing strategy always decreases the performance MUB
loads or increases the system cost created by the backup
system.

The limitation of energy usage is updated in every timeslot:

Q(t) = Q−
t∑

τ=0

I∑
i=1

ei(τ). (35)

We assume all predicted parameters s(t+1), s(t+2), ..., s(t+
T ) can be achieved exactly based on some machine learn-
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ing techniques [32], [33]. We focus mainly on designing a
scheduling mechanism in a time horizon for the geo-MUB
system that can minimize the operational cost while coupling
multiple loads in geo-MUBs.

To solve PJEW, we advocate the dual decomposition
framework, which can solve this problem in a distributed
manner.

A. Dual decomposition algorithm for PJEW

We start with the case where the controller has complete
knowledge about the demand workloads; thus we consider it
as the offline case and name the proposed algorithm the joint
energy and water saving in geo-MUBs (JEWAS-OF). We can
derive the partial Lagrangian function of the PJEW problem
as follows

L(xi(τ)) =
T∑
τ=t

I∑
i=1

gi(xi(τ)) +
T∑
τ=t

υτ

( I∑
i=1

λi(τ)− Λ(τ)

)

+φ

( T∑
τ=t

I∑
i=1

ei(τ)−Q(t)

)
,

(36)

where υ and φ are dual variables.
We apply the dual decomposition algorithm to solve PJEW,

handling the computation in a distributed manner. All steps of
Alg. 1 are presented as follows:

At iteration k + 1:
x-update:

P1 : min
T∑
τ=t

I∑
i=1

gi(xi(τ)) +
T∑
τ=t

I∑
i=1

(υτ )(k)λi(τ)+

φ(k)
T∑
τ=t

I∑
i=1

ei(τ) (37)

s.t HVAC constraints (1) - (6), (38)
(23)− (33),

The sub-problem P1 can be decomposed to be executed at
I sites. Each building i performs a schedule to minimize the
operational cost, depending on the amount energy to process
demand workloads, the HVAC system and the backup system’s
status (i.e., the level of the storage unit) by solving problem
P2 as follows:

P2 : min

T∑
τ=t

gi(xi(τ)) +

T∑
τ=t

(υτ )(k)λi(τ) + φ(k)
T∑
τ=t

ei(τ)

(39a)
s.t HVAC constraints(1) - (6), (39b)

(23)− (33).

Dual update:

υ(k+1)
τ := υ(k)τ + δ

(∑I

i=1
(λi(τ))(k+1) − Λ(τ)

)
, (40)

φ(k+1) := φ(k) + δ
∑T

τ=t

∑I

i=1
(ei(τ))(k+1). (41)

where δ is the step size [8] to update υ and φ.

Algorithm 2 JEWAS-ON: Online algorithm for geo-MUBs

1: Initialization: Set ε1, ε2 and input parameter s;
2: At each timeslot τ, τ = t, ..., t+ T ;
3: Set k = 0, υ(0), φ(0);
4: Predict the sensitive workloads by (42);
5: Apply Alg. 1 with the predicted workloads Λ̂;
6: Go to Step 2;

From this distributed algorithm, each building i receives
information about other buildings via the control variables υ
and φ. Then, each building can schedule its energy usage, and
water usage, delay-tolerant workloads by solving P2.

B. Online scheduling with uncertainty

Next, we present the online scheduling algorithm with
uncertainty demand workloads (called JEWAS-ON). We adapt
JEWAS-OF to a setting in which future demand workloads are
predicted on the basic of the current observation. As shown
in the constraint (10), the number of workloads is related to
the number of active servers in the system. Further, switching
on/off severs frequently may increase the wear-and-tear cost.
Therefore, to control flexibly and smoothly the number of
active servers in datacenters, we propose a prediction mech-
anism to keep track of the peak workloads in the system at
each timeslot t. Intuitively, the demand sensitive workloads in
the next timeslot are predicted based on the ceiling function,
which rounds up the peak workloads according to the average
workloads in the history and the current workloads at timeslot
t. The ceiling function is represented as follows:

Λ̂(t+ 1) = max

(
1

t

t∑
τ=0

Λ̂(τ) + ξs, Λ̂(t)

)
, (42)

where ξs represents the system disturbance of the delay-
sensitive workloads. We present all steps of the online schedul-
ing algorithm in JEWAS-ON, where for every timeslot τ , the
input of workloads is calculated by (42).

V. NUMERICAL RESULTS

A. Settings

We consider a geo-MUB system with five buildings (I =
5) and the energy cap of all MUBs is set to 50 megawatts
during 24 timeslots. For MUB datacenters, each tenant has a
maximum of Si = 3000 servers, and one server has an idle
power pi,s = 200 W and a peak power pi,a = 400 W. The
average PUE is set to 1.5, which is typical for datacenters
[34], that is whenever a tenant consumes 1 KWh energy, the
corresponding energy consumption at the geo-MUB level is
1.5 KWh. Following the assumption in Section III, all servers
are homogeneous, with a service rate µi that is set from 2 to 4
(i.e., 2 to 4 units of workloads per second). The delay threshold
Di is set to 1 second, i.e., the maximum delay-sensitive of the
service is 1 second.

The effectiveness of our method depends directly on the
flexible weight set P . Drawing on the current literature, we
characterize our work with three weight sets to set the system
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in accordance with a green load balancing datacenter point of
view or according to a geo-distributed MUB model as follows:

1) Weight set 1: By using this setting, our model can be
set as a traditional green load balancing geo-distributed
datacenter model, in which the HVAC (the non-datacenter
load) and water factors are not considered. Consequently,
the workloads are scheduled to satisfy all datacenter
constraints in PJEW, and only the datacenters’ energy
usage and the backup system are minimized.

2) Weight set 2: With this weight set, the system can be set
to coordinate datacenter loads and others in the MUBs
without regarding the water saving aspect. Such a setting
reflects a traditional MUB model in the literature. The
workloads are scheduled to minimize not only the energy
cost of datacenter loads but also the non-datacenter loads.
The water saving aspect is not considered in this setting.
As in weight set 1, the backup system is a necessary as-
pect to shed reduction energy by following requirements.
Therefore, workloads are scheduled to datacenter loads
without an outside temperature awareness.

3) Weight set 3: All aspects are combined in this setting.
Here, the workloads are scheduled to minimize not only
the energy consumption but also the water usage in
MUBs. We use this weight set in our simulation to
demonstrate the efficiency of our model.

In all the weight sets, the backup generator is considered
as the worst case in terms of highest cost. Hence, we set
the weight factor of the backup generator (P bgi ) in a range
from 0.3 to 0.48, while the weight of water use (P bi ) is set
in a range from 0.01 to 0.05. With this setting, the backup
system is only executed at each building to compensate for the
amount of exceeded energy consumption in order to satisfy the
requirement of DR. For the WUE setting, we use the values
from [29]. To reflect the geographical distributed scenario in
our model, we scale WUE differently from 1.2 to 2. We
also set randomly the amount of water for the miscellaneous
purposes of a building from 200 to 1000 liters/timeslot, which
is referred from [35].

We set the amount of energy consumption enonDCi (t) for
HVAC systems in geo-MUBs from 100 KW to 300 KW, fol-
lowing the settings of the HVAC system in [13] for buildings in
the summer condition. For edge datacenters, we simulate with
the real workload data from Facebook [36] that is normalized
so as to be adapted to our setting model. Because of the lack
of access to the real data of the delay-tolerant workloads in
datacenters, we randomly set the request workloads, which are
presented in the given parameter arrival rates b(t).

For the storage unit, we set the initial level to be full (i.e.,
Lb0(t) = L̄bi ) and the empty level is set at 0 (i.e., Lbi = 0),
which can be mapped to any minimum threshold as the real
case in practice. The threshold of charging/discharging κ in
our model is set at 200 KWh.

B. Results

1) Convergence: We evaluate the convergence of the total
cost with different values of the step size δ. Fig. 5a shows
the impact of the step size parameter on our algorithm. Using
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Fig. 5: Convergence evaluation.
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Fig. 6: Optimality evaluation.

the dual decomposition method with the step size 1/k, we
achieve the fast convergence within 350 iterations. To further
demonstrate the convergence of JEWAS-OF, we show the gap
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Fig. 7: Evaluation of the weight set 1.
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Fig. 8: Evaluation of the weight set 2.
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Fig. 9: Evaluation of the weight set 3.
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between JEWAS-OF and the optimal result in Fig. 5b.
2) Optimality: Furthermore, we evaluate the gap between

our proposed mechanism and other benchmarks, including the
DP approach and the optimal offline algorithm (i.e., given a
complete offline information). Due to the high complexity of
PJEW with a large T , we set T = 10 for other benchmarks.
In the case of DP, we apply the DP algorithm based on the
recursive principle of the Bell-equation [31] with the initial
point J(x(0)). In particular, suppose J∗(x∗(T − 1)) to be the
optimal result of PJEW at timeslot T − 1; then, PJEW is
equivalent to

L∗(x∗(T − 1)) + min
T−2∑
t=0

I∑
i=1

gi(xi(t))} (43)

s.t. (22)− (33) (44)

In order to implement the evaluation, we use a Python
simulation environment with a processor Intel Core i5 4300U



1949-3053 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2018.2880654, IEEE
Transactions on Smart Grid

11

0 5 10 15 20

Time slot

18

20

22

24

26

28

30

Te
m

pe
ra

tu
re

(o
C

) MUB 1
MUB 2

MUB 3
MUB 4

MUB 5

(a) Temperature at MUBs.

0 5 10 15 20

Time slots

0

2000

4000

6000

8000

10000

12000

W
or

kl
oa

ds

DC 1
DC 2

DC 3
DC 4

DC 5

(b) Delay-sensitive workloads.

0 5 10 15 20

Time slot

500

1000

1500

2000

2500

3000

3500

#
ac

tiv
e

se
rv

er
s DC1

DC2
DC3
DC4

DC5

(c) The number of active servers.

Time slot

0
5

10
15

20
25

MUB

1
2

3
4

5

E
ne

rg
y

(K
W

h)

0
100
200
300
400
500
600
700
800
900

(d) The energy usage.

0 5 10 15 20

Time slot

0.0

0.5

1.0

1.5

2.0

W
at

er
us

ag
e

(m
3
) MUB1

MUB2
MUB3
MUB4

MUB5

(e) Water usage.

0 5 10 15 20

Time slot

100

200

300

400

500

600

700

To
le

ra
nt

w
or

kl
oa

d DC1
DC2

DC3
DC4

DC5

(f) Delay-tolerant workloads.

0 5 10 15 20

Time slot

0

100

200

300

400

500

B
ac

ku
p

sy
st

em
(k

W
h) MUB 1

MUB 2
MUB 3
MUB 4

MUB 5

(g) The backup system.

0 5 10 15 20

Time slot

100

200

300

400

500

600

To
ta

lc
os

t

MUB 1
MUB 2

MUB 3
MUB 4

MUB 5

(h) Total cost of all MUBs.

Fig. 11: Scheduling multiple aspects in overall buildings.

Set PnonDC
i PDC

i P
b+/−
i Pω

i P bg
i

1 [0.05-0.07] [0.2-0.3] [0.015-0.02] [0.001-0.002] [0.1-0.15]
2 [0.4-0.5] [0.25-0.3] [0.015-0.02] [0.001-0.002] [0.1-0.15]
3 [0.35-0.4] [0.25-0.3] [0.07-0.09] [0.07-0.17] [0.1-0.15]

TABLE I: Weight sets.

CPU @ dual 250 GHz to make a comparison between DP
and MPC when scaling T , as shown in Fig. 6a. As a small
T < 7, DP can converge very fast, but the convergence
duration increases exponentially according to T . Fig. 6a also
illustrates the applicability of MPC in our model with a diurnal
setting T = 24. Though DP gives a better gap compared to the
optimal offline result and JEWAS-ON, as illustrated in Fig. 6b,
DP cannot be applied in the complex geo-MUB model with a
diurnal consideration.

3) Effect of weight parameters: In agreement with the
aforementioned setting, we conduct our evaluation on three
given weight sets. We divide the setting of weight parameters
into these sets corresponding to specific cases that can align
control aspects with different priorities. For the detail, we
provide all the weight settings in Table I.

• Weight set 1: In this weight set, we choose the low values
for the weigh parameters of HVAC and water systems
so that the system cost comprised mainly by the energy
cost and the backup system. Without considering HVAC
and water aspects, the workloads are scheduled in order

to mainly reduce datacenter energy cost and the backup
system. The result of this weight set is depicted in Fig. 7,
where the workloads are scheduled to minimize only the
datacenter energy loads. The inefficiency of this setting is
revealed in Fig. 7a and Fig. 7b, with the very high shed
energy of the backup system as well as the high water
usages during 24 timeslots.

• Weight set 2: Using this setting, our system can be seen as
a traditional MUB system [3], in which the water aspect is
neglected by a very low weight value. Datacenters, HVAC
and the backup system participate in the reduction energy
issue. Unlike weight set 1, the participant of the HVAC
results in the reducing energy of the backup system up to
39.6% compared to the result of weight set 1. The total
energy consumption in MUBs is also reduced so that the
water usage is lower than the outcome of weight set 1.
All the results of this setting are presented in Fig. 8.

• Weight set 3: Using this weight setting, all aspects
including HVAC, datacenters, backup system and water,
are participated to minimize the system cost. To illustrate
the result of this setting, we present the outcome in Fig. 9.
The energy consumption of our system in 24 timeslots is
reduced by 19% compared to the result of weight set 1.
In addition, the water usage in this setting can be reduced
up to 37% compared to the water usage in weight set 1.
In addition, the amount of energy from the backup system
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(a) Workload distribution in MUB 4 and MUB 5.
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(b) Energy consumption in MUB 4 and MUB 5.
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(c) Water usage in MUB 4 and MUB 5.

Fig. 12: The impact of temperatures.

is lower then the results of the prior weight sets.
In order to illustrate the efficiency of our designed
method, we use weight set 3 for further evaluations in
this work since it can include multiple aspects to control
the system.

To further illustrate the impact of weight settings to control
the energy and water loads in our model, we select MUB 5,
which has the highest energy consumption and water usage
among all the buildings. We then demonstrate the change of
loads in the building at the peak workload period (e.g., the 9th

timeslot) by varying the weight setting value Pωi , as shown
in Fig. 10. When the weight setting value Pωi increases, the
amount of water decreases, but the system needs to shed more
energy from the backup system.

4) Effect of JEWAS-OF in geo-MUBs: Without uncertainty,
we assume that the system can collect exactly the input infor-
mation (such as workloads in a time horizon). Hence, we use
the history of workloads to evaluate our proposed method. The

snapshot of the schedule in all buildings during 24 timeslots
is shown in Fig. 11. As the first measurement, we show the
temperature changes of offices in all MUBs in Fig. 11a. We
then demonstrate the dynamic of controlling workloads of
our mechanism in Fig. 11b, which plots the delay-sensitive
workload distribution in datacenters. This result is explained
by our settings, where the service rates of servers in MUB
4 and MUB 5 are set to be higher than others. Thus, the
delay-sensitive workloads achieved at these datacenters are
dominant. However, at timeslots 19 to 23, the workloads
are driven higher in MUB 4 than in MUB 5 because of its
lower temperature. Also, due to this workload distribution,
the number of active servers in these datacenters is greater
than in MUBs 1, 2, and 3, as shown in Fig. 11c. In order
to show the energy consumption of all loads, the snapshot
during 24 timeslots is captured in Fig. 11d. Similar to the
energy usage, the amount water usage of all MUBs is shown in
Fig. 11e, where MUB 4 and 5 consume more water compared
to MUBs 1, 2 and 3 in almost timeslots. Furthermore, the
efficiency of our model is illustrated in Fig. 11f with the
delay-tolerant workloads. This illustrates the dynamic control
of our model, which is able to plan the execution of the delay-
tolerant workloads at low-cost timeslots. We next evaluate
the performance of the backup system. Fig. 11g shows the
dynamic energy control of the backup system to ensure an
energy capping requirement. With high energy demand, MUB
4 and MUB 5 need to supply more energy from the backup
system to accommodate their loads’ constraints. Finally, we
show the total cost incurred in each MUB during all scheduling
timeslots in Fig. 11h. The changes of system costs during
24 timeslots corresponding to workload scheduling, and the
energy and water usage of each MUB are reflected in this
figure.

5) Effect of outside temperatures in geo-MUBs: As shown
in the system model, a change in outside temperature T bi (t)
will affect our control decisions, since it is involved in
the water usage calculation. In particular, a higher outside
temperature causes higher water usage in a building as well
as affecting the system cost. As the input of our model, we
plot the change of outside temperatures in MUBs during 10
timeslots, as shown in Fig. 12. From timeslot 14 to timeslot
19, the sensitive workload distribution at MUB 4 and MUB5 is
similar, but it varies after that. More workloads are navigated
to MUB 4 corresponding to its lower temperature, as shown
in Fig. 12a. In contrast, MUB 5 consumes higher energy
compared to MUB 4, even though the workloads are scheduled
less than MUB 4. Similar to energy, the water usage at MUBs
also reflects sensitively the temperature change as shown in
Fig. 12c.

6) Effect of JEWAS-ON on geo-MUBs: To evaluate the
online mechanism of our work, we create a simulation within
24 timeslots. The result is compared to the real workloads
and optimal values of energy and water usage in MUBs, as
shown in Fig. 13. In particular, Fig. 13b and Fig. 13c illustrate
the small gap between the prediction result and the optimal
value. These outcomes during 24 timeslots show that the MPC
mechanism can produce a nearly optimal result.
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Fig. 13: Evaluation of the online algorithm JEWAS-ON.
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Fig. 14: Efficiency of energy and water saving.

7) Effect of energy and water saving: JEWAS-ON explic-
itly coordinates multiple loads into its workload management
decision and, by doing so, shows better results in both
energy and water usage. Fig. 14 demonstrates that JEWAS-
ON outperforms the others considered methods (including the
uncoordinated and over-provisioning approaches) to reduce
energy consumption and water usage during a daily load. The
uncoordinated method is considered as the current practice; in
it, the workloads are driven to the nearest datacenters without
regarding other loads (offices). In addition, we consider the
over provisioning benchmark as the baseline solution, in which
the energy and water are supplied based on the peak load.
Fig. 14a shows that our benchmark can reduce the energy
consumption up to 17.39% compared to the uncoordinated
approach and 33.23% compared to the over provisioning
method. For another result, Fig. 14b illustrates the efficiency of
water saving in all buildings compared to the over-provisioning
benchmark, where it leads to a reduction of water usage up to
12.23% in all the buildings.

8) Effect of the storage unit on geo-MUBs: By considering
multiple dimensions in the backup system, we show the
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Fig. 15: Evaluation of the storage unit.

efficiency of the storage unit factor in Fig. 15a, where the
battery can achieve up to 30.66% and 32.32% amounts of
power supplied by the backup system in MUB 4 and MUB
5, respectively, during 24 timeslots. The total energy supplied
during 24 timeslots in our system by the backup system is
shown in Fig. 15a. In this simulation, we limit the amount of
energy of charging/discharging level of the battery by 200 KW,
which restricts the system to exhaust the battery very quickly.
In practice, with a higher storage capacity, the backup system
could enhance its control capacity. Instead of merely handling
the backup generator during a power shortage, the storage unit
could supply a better solution to reduce the operational cost.
The snapshot of charging/discharging the battery in MUB4 is
shown in Fig. 15b. The storage unit plays a significant role in
supplying power during peak workloads periods.

VI. CONCLUSION

In this paper, we have presented the way of coordinat-
ing joint energy scheduling and water saving in geo-MUBs.
We have formulated an optimization problem for coupling
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multiple loads (including non-datacenters and datacenters) in
geographically distributed MUBs. We consider multiple knobs
for energy reduction, such as IT knobs (i.e, turning on/off
servers, workload management) and non-IT knobs (i.e., a
cooling system, storage unit, and a fuel generator). Our model
not only captures the workload management, but also concerns
the impacts of office loads on datacenter loads in terms of
joint energy and water management in buildings. We further
consider a schedule for the system during a time horizon,
where all loads can be controlled to satisfy an energy capping
constraint imposed by an energy sustainability program. In
order to minimize the operational cost, we apply MPC and
the dual decomposition framework to address PJEW. We
propose two mechanisms to be adapted for offline and online
scenarios, where we can schedule the energy and water usage
in buildings as well as handle the backup system. Through
an extensive simulation, we show that our methods converge
well in a distributed scenario. We also conducted many case
studies to validate our proposed mechanisms, and in them the
results reached a close-to-optimal solution.
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