
Fostering Consumers’ Energy Market
through Smart Contracts

Ioannis Kounelis, Gary Steri, Raimondo Giuliani, Dimitrios Geneiatakis, Ricardo Neisse, Igor Nai-Fovino
European Commission, Joint Research Centre (JRC)

Cyber and Digital Citizens’ Security Unit

Via Enrico Fermi 2749, 21027 Ispra, Italy

Email: {firstname.surname}@ec.europa.eu
Abstract—Micro-generation promises to greatly contribute to

the energy balance of the energy grid; however, so far, its market
penetration is going slow due to the few, or not-existing, direct
economic benefits end-users would enjoy by deploying an in-
house micro-generation system. In this paper, taking advantage
of the potentialities of blockchain technologies, we propose a
solar energy production and distribution architecture using smart
contracts, a particular distributed ledger paradigm, to support
automatic energy exchanges and auctions, potentially enabling
a new, open and more fruitful, under an end-user perspective,
energy micro-generation market. We present the conceptual
design of the approach, as well the energy grid prototype and the
control layer, running on the Ethereum platform. The proposed
architecture has been implemented and validated through an in-
house developed test-bed.

I. INTRODUCTION

Micro-generation is the capacity for consumers to pro-
duce electrical energy in-house or in a local community. The
concept of “market” indicates the possibility of trading the
electricity that has been micro-generated among producers
and consumers, where a user acting both as a producer and
consumer is called a “prosumer”. Traditionally, this market
has been served by pre-defined bilateral agreements between
prosumers and retail energy suppliers. This means that until
now, electricity-generating prosumers have not had real access
to the energy market, which remains a privileged playing field
for the institutionalised energy suppliers. This fact has, so far,
heavily impacted on the the real diffusion at large scale of
micro-generation due to the limited economic advantages this
energy generation approach would bring to the prosumers.

Indeed, the main options considered so far by the technical
literature, were completely centralised and their viability (un-
der a prosumer perspective) was in general challenged as they
introduce additional management fees and costs and assume
the intervention of a trusted third party reducing once again
the potential gains of end-users. New approaches should be
developed enabling end-users to have free access to the energy
market. In this context the advent of distributed ledgers, i.e.,
blockchains, can be considered beneficial.

In particular, the use of a blockchain for energy repre-
sentation and exchange provides several advantages. First of
all, it gives the possibility to have a trusted and decentralised
direct exchange between two parties. No intermediaries or third
parties are needed in order to fulfill transactions. The data
on the blockchain are public, easily verifiable by interested

parties, consistent, and always available. Even if the data
are available, the users remain pseudonymous, as for the
transactions blockchain addresses and not personal data are
used. Moreover, due to their decentralised nature and therefore
lack of a central point of failure, blockchains are very resistant
to denial of service attacks. Finally data on the blockchain
are immutable, meaning that once inserted in the blockchain
it cannot be altered, providing therefore a reliable point of
reference. By having these features, blockchain provides a
trusted technology that can be used as an Information and
Communication Technology (ICT) backbone for an open en-
ergy market.

According to our approach, self-generated electricity could
normally be either consumed within the house, accumulated in
next-generation batteries for later use, or simply given back to
the grid, where, thanks to the distributed and pervasive nature
of the blockchain, the produced energy could be redeemed
elsewhere. For example when charging an electric vehicle
abroad, or sold through the blockchain to the best buyer,
according to a mechanism similar to that of a stock-exchange
market.

Exploiting the potentialities of blockchains and distributed
ledgers, in this paper we propose a solar energy production and
distribution architecture that uses smart contracts to support
automatic and distributed energy exchange, thus allowing the
development of an energy micro-generation market more open
and fruitful, from an end-user perspective. More in detail
we introduce a platform named Helios that facilitates micro-
generators to exchange energy freely in a limited geographical
area. In this setup a custom made Internet of Things (IoT)
smart meter is used to account and register the micro-generated
energy in the blockchain, while the smart contract supports
the monitoring and accounting of energy exchange in terms of
a financial transaction. The model has been implemented and
validated through an in-house developed test-bed composed by
a real physical energy infrastructure and the related control and
ICT layers1. To the best of our knowledge, Helios is among
the first solutions built on off the shelf devices and open source
technologies, enabling prosumers to access the energy market.

In the following sections, we first provide some background
information on blockchain technologies in Section II, and then
after having presented a general overview of the approach
in Section III, a description of the electrical grid physical

1The communication between all system elements is achieved through local
or remote Internet Protocol (IP) connections.978-1-5386-2066-3/17/$31.00 ©2017 IEEE

architecture is provided in Section IV. The system logic,
together with the description and the code of the energy
controller and smart contract is provided in Sections V and
VI respectively. Finally, Section VII provides the related work
and Section VIII presents the work conclusions and the future
planned research activities.

II. PRELIMINARIES

In this section we briefly describe the main characteristics
of blockchains and smart contracts technologies our proposed
solution relies on.

Blockchains are the backbones of cryptocurrencies, such as
Bitcoin2. They are the technology on which cryptocurrencies
are built on, and on which transactions can succeed without the
need of having a trusted third party. In particular, a blockchain
is a tamper-proof and shared data structure composed of a
list of blocks of transactions. The blocks are distributed to all
nodes of the network and contain all the transactions that took
place from the creation of the cryptocurrency. New transactions
are inserted in the end of the chain and are linked to the
previous block of transactions, as each block references the
previous block’s hash.

The intrinsic nature of blockchains presents some interest-
ing advantages:

• Disintermediation and Trustless model: exchanges (or
transactions) do not require intermediaries or trusted
third parties; moreover, the parties have full guarantee
that the transactions will be executed as expected

• User Empowerment: transactions and data are in con-
trol by the users community

• Resilience: due to their decentralised nature,
blockchains do not have a central point of failure

• Transparency and immutability: every modification in
public blockchains is visible to everybody, moreover,
the transactions stored in a blockchain cannot be
altered or deleted as it is not computational feasible
to do so

• Low transaction costs: being completely un-
supervised, the intermediaries costs are eliminated

For these reasons, blockchain can be used to implement
other services apart from currency transactions. One of the
most promising is smart contracts. A smart contract is a
computer program that is capable of executing or enforcing
a predefined agreement using a blockchain, when and if
specific conditions are met. Its main goal is to enable two
parties to perform a trusted transaction without having the
need of intermediaries. Moreover, smart contracts inherit the
characteristics of blockchains and thus have no downtime,
censorship or third party interference.

In the model presented in this paper we build up on the
open-source Ethereum3 blockchain-based distributed comput-
ing platform, namely the Ethereum Virtual Machine (EVM).
The main goal of the EVM is to keep a distributed record

2https://bitcoin.org/
3https://www.ethereum.org/

Energy Producer

Wallet Helios Coin Helios CoinEthereum Smart Contract

Energy ConsumerSmart MeterSmart Meter

Wallet

Controller

Battery/AC main

Fig. 1. Helios model high level architecture

of transactions performed using the Ethereum digital cur-
rency, Ether (ETH). A blockchain-based platform such as
the EVM can be seen as a distributed database that can be
accessed/managed by many people that do not necessarily
trust each other and do not share a common trusted 3rd
party. In contrast to other blockchain-based platforms that
target mainly mining of the digital currency and transaction
management, Ethereum also provides smart contracts as a core
functionality. In Ethereum, an obligatory payment fee, named
gas, is required in order to finalise the transactions.

The functionalities that the Ethereum smart contracts pro-
vide along with its wide and well documented use make it ideal
for the development of our prototype. Moreover, it provides
a user friendly Javascript Application Programming Interface
(API) for accessing the smart contract’s functionalities from a
third application. We have used this feature for developing our
middleware controller, as described in Section V.

III. HELIOS MODEL OVERVIEW

This section provides an overview of the general principles
adopted by the Helios model proposed in this paper.

The main aim of our model is to enable micro-grid pro-
sumers to produce, consume and trade energy. In particular,
they would be able to:

• Produce energy and store it in an in-house cache-
battery (for local energy consumption)

• Consume the stored energy

• Release excess energy to the grid and receive virtual
coins in return

• Transfer/Exchange the virtual coins

• Redeem the virtual coins in exchange with energy

In our model, we assume a local grid where energy is
produced and consumed in a limited geographical area, such as
a local neighbourhood. Energy produced by a prosumer may
be saved in the user’s local battery for later use or may be
immediately injected in the local grid. An additional possibility
is to have a common, central to the neighbourhood, battery
shared as a temporary energy buffer. As it can be observed by
the high-level overview of the Helios model in Figure 1, the

Fig. 2. Energy grid model main components

model is divided in three layers: (a) the energy grid, (b) the
middleware controller, and (c) the smart contract.

When energy is injected in the grid a smart meter linked
to each producer continuously measures how much energy
has been injected in total. These smart meters, along with the
software that handles their output, i.e. a middleware controller,
are the input source for our smart contracts. After a predefined
amount of energy has been injected to the grid, an Helios Coin
(HEC) is awarded to the corresponding prosumer.

The middleware controller interconnects the grid with
the smart contract since these systems cannot communicate
directly with each other. As a result, the controller plays the
role of invoking the smart contract on one end, and on the
other receiving the readings from the grid, thus facilitating
communication between the two entities.

The energy grid is handled by its own smart contract. It is
aware of the entities connected to it, it can transfer a specified
amount of energy to a connected energy consumer, and it is
aware of how much energy for consumption is available at any
time. The grid’s smart contract takes as input HECs and then
releases the energy that corresponds to the amount of HECs
received in the payment by the sender.

The way HECs can be circulated in a market depends on
their owners interests and strategies. The simplest way would
be for each owner to have a smart contract in which he sells
HECs in exchange for another asset or coin. It should be noted
that the smart meters, and the electrical grid in general, is
considered a trusted party; meaning that its measurements and
operations are considered reliable and are treated as such.

IV. SMART ENERGY GRID MODEL

In this section we present the description of the energy grid
(as seen on the top part of Figure 1) of the Helios model as
well as the implementation of this model using off the shelf
components and IoT devices .

The model is based on the concept of a smart power island;
i.e. a local area power distribution system. The high level
architecture of our model is illustrated in Figure 2. Specifically,

it is composed of an Alternating Current (AC) Main single
phase distribution line using a bus topology. The line provides
power exchange among nodes, while power is exchanged using
a locally generated frequency at 220/110 Volt nominal. Within
the island there are at least two nodes that are capable of
generating, consuming and storing power. The basic rules
regulating the nodes are:

1) They must conform to the frequency provided by the
AC Main line

2) They must comply to a fixed capped maximum power
that can be exchanged with the line

3) The cap can be different for power injection or
withdrawal

4) Power and energy metering must be provided by the
nodes in the point where it exchanges power with the
local grid

Any node complying with the above rules can be added to
the network as a producer and/or a consumer. Any node can
access the local line provided it respects the above mentioned
rules. This model can represent both the on grid or off grid
operation of the network. Note that for our custom made
system, each node includes an AC and a Direct Current (DC)
subsystem. The DC subsystem is made of a 12 V battery (300
AH), a solar panel (130W) and a power controller for charging
the battery. Two inverters and an AC to DC battery charger are
found in the AC subsystem.

Within the island there is also a special gateway node with
the following characteristics:

1) It must provide AC synchronization frequency to the
line

2) It must provide energy absorbing capabilities up to
the sum of the maximum production rating of all
nodes

3) It must provide energy injection capabilities up to the
sum of the maximum consumption rating of all nodes

4) Power metering of total incoming and outgoing power
must be provided.

Therefore, the distribution line can be connected via a
gateway node to an ideal generator/load, to a main grid with
the same characteristics, or to both. The gateway node is rep-
resentative of a main power grid connection or a local power
generating/storing device such as a neighbourhood battery.

To control and monitor the power flow, we rely on custom
made smart meters that enable power management through
an IP connection. To do so, we make use of Internet of
Things devices supported with Wi-Fi and Ethernet interfaces.
Specifically, the metering and control subsystem are made of
an Arduino Yun and an Emon Shield board correspondingly.
The metering subsystem is capable of measuring AC current,
DC current and AC/DC voltage. Listings 1 and 2 show a
portion of code for AC and DC readings respectively. The
control subsystem is used to route power within the node
among the loads, the grid, and the battery storage. Furthermore,
to enable the power-management over an IP we expose the
services of metering and power control through an Hypertext
Transfer Protocol (HTTP) interface that supports the following
commands:

• Open/Close relay N [write command]

Listing 1. AC reading.

if (CT1) emon1.calcVI(50,2000);

if (CT1){
pfPow1[meas_count%mem_d]=emon1.realPower;
accum1=0;
for (int ii=0;ii<mem_d;ii++)
accum1+=pfPow1[ii];
accum1=accum1/mem_d; }

�

Listing 2. DC reading.

sensorValue = analogRead(analogInput0);
outputValue = ((long)sensorValue - 500) * 1000 / 133;
amps = (float) outputValue / 1000;
value = analogRead(analogInput1);
vout = (value * 5.0) / 1024.0;
vin =calibB*vout / (R2/(R1+R2));
if (vin<0.09)

vin=0.0;
�

• Read AC Meter (N, param) [read command]

• Read DC Meter (N, param) [read command]

where N is the sensor number and param can be voltage,
current, instant power, average power. All read commands will
return a timestamp from the sensor’s local clock.

V. MIDDLEWARE CONTROLLER

In order for the smart contract to communicate with
the grid, to get the measurements of the smart meters and
issue commands to release the requested energy towards a
client, a middleware application is needed to facilitate the
communication between the two parties (as seen in the middle
part of Figure 1). This application, is the node controller
application. The controller interacts with the physical model,
as described in Section IV, with the Arduino Yun board. As
a result, the controller has in real time the data transmitted
by the smart meter and can immediately issue HECs. The
controller is a single application that handles simultaneously
all the smart meters of the local grid. It is also the entity
that is the owner of our smart contract. On the other end,
the controller communicates with the smart contract using the
Web3 Javascript -Dapp API4.

The controller reads from the smart meter every hour. It
then calculates the difference with the previous measurement
and is thus in position to determine how much energy has been
put in the grid from the corresponding user. Once the energy
committed to the network has been calculated, new coins will
be issued and assigned to the energy creator. The controller
will have to call the mint function, i.e. the function that issues
new coins, of the smart contract and pass the two necessary
parameters: the address of the creator and the value of energy
created in Wh (watt-hour). To do this, however, it will first
need to unlock the account as for this transaction a fee for the
gas consumed has to be paid to the network (in Ether).

As the creation of coins assumes a cost for the controller,
and thus for the smart contract owner, the transaction frequency
should be well estimated. Even if the cost is small, it is still

4https://github.com/ethereum/wiki/wiki/JavaScript-API

an extra burden that will in the end affect the energy producer.
As a result, the frequency of the control of the smart meter
and thus the coin creation should be set up taking into account
the average amount of energy that is produced by the user and
his preference on receiving immediately coins for the energy
that has been committed into the network. These parameters
can be set up during the registration of the user on the grid
and then fetched when needed by the controller.

For our demo, we assume this factor not relevant and have
it accumulated with the estimated loss of energy during the
energy transactions. Moreover, as our scope is to test the
proposed solution and monitor its behaviour, we have set the
coin generation frequency to a low limit of one Wh. For a
market ready application the limit will need to be adapted to
higher values, always depending on the solar panels output.

When it comes to releasing energy towards a user, when
coins have been returned to the smart contract owner, the
controller gets informed by incoming transactions by following
the smart contract’s event that announces coin transfers on the
network. When a new transaction towards the contract owner’s
address arrives, the controller communicates with the Arduino
board and it issues a command to release an amount of energy
that corresponds to the coins received towards the sender of
the transaction. The coins then remain at the contract owner’s
address and are considered spent. The controller’s functions
that create coins and monitor the transfers in the network in
order to release energy can be seen in Listing 3.

Listing 3. Creating and utilizing Helios Coins from the controller

// creation of contract object
var myContract = web3.eth.contract(abiHEC);
var myContractInstance = myContract.at(addressHEC);
var events = myContractInstance.Transfer();
events.watch(function(error, result){
if (!error) {
if(result.args.to == addressOwner){
console.log('Releasing ' + valueTransfer + ' Wh to ' +

fromTransfer);
releaseEnergy(fromTransfer, valueTransfer);} } });

//Coin creation
function createHEC(addressProducer) {
var Wh = smartMeterReader() - lastSmartMeterReading;
//unlocking account
web3.personal.unlockAccount(allAccounts[0], password,

function(error, result){
if(!error){console.log(result);} });
//Mint tokens
myContractInstance.mintToken(addressProducer, Wh, function(

error, result){
if(!error)
console.log(Wh + 'Wh sent to ' + addressProducer); }); }

�

VI. SMART CONTRACT IMPLEMENTATION

The smart contract we have deployed (as seen in the lower
part of Figure 1) has the role of the record keeper, with
the corresponding reward mechanism. The smart contract is
written in Solidity, Ethereum’s native programming language,
and is deployed on Ethereum, both on Ethereum’s official
testnet (Ropsten) and on our own private network. Every time
a user commits energy in the grid, the smart contract will issue
coins that correspond to the energy produced and automatically
send them to the energy producer.

More specifically, the smart contract has a mint token
function that takes as input two parameters: the address of

Listing 4. The basic functions of the smart contract

event Transfer(address indexed from, address indexed to,
uint256 value);

//Constructor
function MyHeliosToken(string tokenName, string tokenSymbol)

onlyOwner(){
balanceOf[msg.sender] = initialSupply;
symbol = tokenSymbol;
name = tokenName; }

//Create coins
function mintToken(address target, uint256 mintedAmount)

onlyOwner {
balanceOf[target] += mintedAmount;
totalSupply += mintedAmount;
Transfer(this, target, mintedAmount); }

// Send coins
function transfer(address _to, uint256 _value) {
if (balanceOf[msg.sender] < _value) throw;
if (balanceOf[_to] + _value < balanceOf[_to]) throw;
balanceOf[msg.sender] -= _value;
balanceOf[_to] += _value;
Transfer(msg.sender, _to, _value); }

�

the entity that has produced the coins and an unsigned integer
that represents the number of HECs to be issued. What this
function does is to issue new coins and assign them directly
to the indicated address. The energy producers will need to
follow the token in order to detect incoming transactions and
thus see their newly created coins. They can easily do so
from the graphical interface of the Ethereum wallet; the only
parameter needed is the smart contract’s address. Once they
are in possession of the coins they can circulate them freely
according to their desires; they can choose to sell, use or
exchange them.

From the smart contract’s address, one can verify at any
time the balance of any address, view the total supply in coins,
view the smart contract’s name and symbol, view the smart
contract’s owner, and follow live the transactions related to
the smart contract that occur in the blockchain. The functions
of the contract are viewable for everyone, but apart from the
transfer function, i.e. the function to transfer coins from one
user to another, are only executable by the contract’s owner
who in this case is the node controller. In order to watch the
contract and see its functions, apart from the contract’s address
the metadata description of its interface is needed. Some of the
basic functions of the smart contract can be seen in Listing 4.

According to the description done previously, the deploy-
ment of the contract has to be done on the controller node,
which is commonly used by all the users of the electric
system. In this optic, in order to guarantee transparency and
the application of the same rules for everyone, we envisage
that the deployment of the contract and the management of
the controller node is done by a consortium composed of all
the neighbours connected to the electric subsystem.

With the deployment of the smart contract we have man-
aged to create a fully working smart grid energy trading
system. The system is now able to automatically detect energy
inputs and through the controller issue coins with the smart
contract. The coins are then circulated as virtual tokens on
Ethereum and when they are redeemed they are returned to
the controller’s address, which on its side communicates with

the electric grid in order to release the equivalent to the coins
energy. Moreover, the coin transfers and addresses’ balance
are public and can be monitored by any interested party, as
usually expected from a blockchain-based approach.

VII. RELATED WORK

In this section we describe existing approaches applying
digital currencies in the energy area and how they differ
from our proposed approach. Bankymoon [1] is a startup in
South Africa proposing to use smart meters connected to the
blockchain allowing users to load Bitcoins in order to enable
the energy flow. In this approach the cryptocurrency is simply
used as a prepaid payment option.

Other solutions also using simply cryptocurrencies as a
payment option are Solether and BlockCharge. Solether5 is
an open source proposal of an autonomous node for energy
management consisting of a solar panel, a battery, and an Intel
Edison board that interfaces with the Ethereum blockchain.
The node is associated with an Ethereum address and it is
therefore considered an Ethereum entity. Whenever a payment
is received the energy flow is enabled through the USB port,
which can be used to charge or power a device. The amount
of energy flow allowed is automatically accounted according
to the amount of the received payment. In the long term the
amount of money received in the device account could surpass
the cost of the device itself, allowing for the device to actually
work as an asset producing money for its owner.

BlockCharge uses the Slock.it technology that proposes a
Smart Plug to enable on the go charging of electric cars using
a cryptocurrency. Slock.it is a blockchain-based approach to
rent or sell anything directly without intermediaries, which
in the case of BlockCharge is selling of electrical energy.
BlockCharge itself concentrates on the energy market but
the Slock.it technology has a more broad coverage of smart
contracts for any application domain.

More advanced applications of blockchain technology are
the SolarCoin6 and GrünStromJeton7 reward programs. So-
larCoin is a global rewards program for solar electricity
generation created in 2014 by a group of volunteers interested
in helping the environment. The idea is to award producers of
solar energy globally with a digital currency named SolarCoin
where 1 coin represents 1 megawatt-hour (MWh) of solar
electricity generation. In their technical implementation the
SolarCoin infrastructure is described as a lite version of
Bitcoin, using scrypt as a proof-of-work algorithm. The source
code is open source and available online8. Similarly to the
SolarCoin program, the GrünStromJeton is a proposal for
awarding customers with tokens that serve as an indicator
of sustainability of current use and production, as well as to
determine their CO2 footprint.

Some startups also propose to use blockchain technology
to enable home energy producers and consumers to exchange
energy credits in a distributed and dynamic way. A pioneer
work on this domain is the TransActive Grid technology, which

5http://solether.mkvd.net
6https://solarcoin.org
7https://stromdao.de/gruenstromjetons
8https://github.com/onsightit/solarcoin

has been applied in the world’s first peer-to-peer blockchain
energy solution, employed in the Brooklyn Microgrid9. Sim-
ilarly to our proposal, in the TransActive Grid architecture
each house in a neighbourhood acts as an energy producer
and consumer. When the house generates energy the smart
meter detects energy production/injection and energy tokens
are generated to the home owner. The home owner can sell
the tokens to neighbours that can then use them. Once used,
the tokens are destroyed by the energy consumer’s smart
meter when it detects the inflow of energy. Consumers can
purchase renewable energy credits from 3rd party retailers or
buy tokens/credit from their neighbours directly enabling a
local microgrid energy market. Whenever a house generates
energy, the smart meter detects it and it is usually consumed
by the nearest loads.

Another startup example is GridSingularity10, which targets
the energy finance market using a blockchain-based platform.
The platform is based on Ethereum and the beta version is
currently under development.

All these startups including TransActive Grid and GridSin-
gularity, in contrast to our work, do not provide technical
details of their solutions for strategic reasons. For example,
there are no details on the smart contract implementation, how
the smart contracts interact with the smart meters, what the
architecture of the system is, etc.

In the academic literature the concept of energy tokens for
trading of energy was discussed in a high-level by Dimitriou
& Karame [2], where producers of energy receive tokens
directly from the utility provider when energy is injected in
the utility grid. In their work also security and privacy issues
are highlighted. More recently, Aitzhan & Svetinovic [3] also
propose a multi-signature approach to enable security and
privacy in a decentralised energy market.

The NRGcoin [4] is currently the only decentralised digital
currency proposed in the academic context targeting exchange
of energy in smart grids. Together with the NRGcoin currency
the authors also propose a novel trading paradigm for buying
and selling green energy using a double action process. The
main difference with our proposal is that the NRGcoin is
a separate coin, built on its own blockchain, while Helios
Coin is based on a smart contract. Moreover, there are no
technical details on how NRGcoins are created and how the
proof of work functions in practice. It seems to be a theoretical
proposal, focusing mostly on the NRGcoin trade market.

Close to our approach is the issue of US Renewable Energy
Credits (REC) as a cryptocurrency on Ethereum’s blockchain,
described in [5]. Here the purpose is to represent the RECs as
a new cryptocurrency on Ethereum that can be exchanged or
traded. However, also this paper does not provide a description
of the physical or software implementation.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented Helios, a solar energy dis-
tribution system controlled by a smart contract running on
an Ethereum blockchain. We have developed and tested the
whole infrastructure of the system, from the assembly and

9http://brooklynmicrogrid.com
10http://gridsingularity.com

configuration of all the devices in the physical layer (solar
panels, batteries, smart meters, IoT control devices) to the
implementation, and deployment of the smart contract based
on Ethereum. In contrast to the other solutions presented
in literature, we describe and document all the design and
implementation steps of a complete solution that enables users
to access the energy market without the need of interacting
with intermediaries central entities.

The physical part, presents a certain degree of flexibility,
and it can be configured to work in an autonomous island or
connected to a main grid. For what concerns the logic, the one
adopted in our approach is the first version of the contract. Our
goal was not to provide a platform fully enhanced with trading
capabilities, but instead to prove feasibility of the proposed
design and architecture. We already envisage improvements
for our energy model and will gradually pursue them in the
next phase of the implementation.

First of all, we plan to study the effectiveness of the system
when used in a commercial mode and not only as purely
experimental one, as well as comparing various tarification
schemes. One factor that could have an impact on this is
the energy loss during transfer, which should be considered
in the implementation of the system logic and transactions.
Moreover, the business model of the system must be well
studied in order to implement an end product that can be used
in a real environment. One other interesting feature that could
be explored is the possibility for our model to interact with an
utility company for a bi-directional energy exchange when it
is needed.

For what regards the smart contract, we plan to extend it
with more complex functions and allow the use of coins from
third parties, automatic control of transaction fees from each
owner’s account, and a market for exchanging HECs. Finally,
we would like to implement an independent cryptocurrency
that would use the energy creation as proof-of-work for the
creation of new coins. We want to compare this method with
the one described in this paper and find the advantageous and
disadvantageous aspects of each one.

REFERENCES

[1] “Smart meters prepaid: Bankymoon develops bitcoin solution,” AMI &
Smart Metering, 04 2015, available at: https://www.metering.com/smart-
meters-payment-bankymoon-develops-bitcoin-solution/.

[2] T. Dimitriou and G. Karame, “Privacy-friendly tasking and trading
of energy in smart grids,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing, ser. SAC ’13. New
York, NY, USA: ACM, 2013, pp. 652–659. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480488

[3] N. Z. Aitzhan and D. Svetinovic, “Security and privacy in decentralized
energy trading through multi-signatures, blockchain and anonymous
messaging streams,” IEEE Transactions on Dependable and Secure
Computing, vol. PP, no. 99, pp. 1–1, 2016.

[4] M. Mihaylov, S. Jurado, N. Avellana, K. V. Moffaert, I. M. de Abril, and
A. Now, “Nrgcoin: Virtual currency for trading of renewable energy in
smart grids,” in 11th International Conference on the European Energy
Market (EEM14), May 2014, pp. 1–6.

[5] R. D. Leonhard, “Developing renewable energy credits as cryptocurrency
on ethereum’s blockchain,” Broader Perspective, 12 2016, available at:
https://ssrn.com/abstract=2885335.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

