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Abstract—This paper proposes a peer to peer (P2P), blockchain
based energy trading market platform for residential commu-
nities with the objective of reducing overall community peak
demand and household electricity bills. Smart homes within the
community place energy bids for its available distributed energy
resources (DERs) for each discrete trading period during a day,
and a double auction mechanism is used to clear the market and
compute the market clearing price (MCP). The marketplace is
implemented on a permissioned blockchain infrastructure, where
bids are stored to the immutable ledger and smart contracts
are used to implement the MCP calculation and award service
contracts to all winning bids. Utilizing the blockchain obviates
the need for a trusted, centralized auctioneer, and eliminates
vulnerability to a single point of failure. Simulation results show
that the platform enables a community peak demand reduction
of 46%, as well as a weekly savings of 6%. The platform is also
tested at a real-world Canadian microgrid using the Hyperledger
Fabric blockchain framework, to show the end to end connectivity
of smart home DERs to the platform.

Index Terms—blockchain, renewable energy, smart home,
microgrid, energy trading, smart contract, hyperledger fabric,
transactive energy

I. INTRODUCTION

Motivated by environmental concerns related to climate
change and associated financial incentives, homeowners in
residential communities are shifting towards procuring locally
deployed distributed energy resources (DERs) that seek to
maximally utilize clean, renewable energy to accomplish their
respective tasks [1]. Within residential communities, these
DERs typically include: rooftop photovoltaic arrays (PV),
plug-in electric vehicles (EV), smart thermostats (ST), as well
as battery energy storage systems (BESS) [2]. These DERs
offer many tangible benefits to the community, including in-
creased energy efficiency, reduction of peak demand, increased
resiliency from outages in the main grid, as well as a decreased
carbon footprint.

However, these DERs can have unintended negative conse-
quences if left uncontrolled. Previous work has investigated
the negative impact of uncontrolled EV charging leading to

overloading of local transformers, as well as uncontrolled PV
generation leading to overvoltage violations [3]. The addition
of DERs to a home has indeed resulted in the vision of smart
homes, however, there is a fundamental need for additional
mechanisms that will coordinate and align the operation of
smart home DERs to mitigate the aforementioned issues.
Furthermore, since the DERs are owned by individual home
owners within the community and not the community or
utility, the mechanism must lend itself towards incentivized
participation rather than unilateral control.

An emerging mechanism that aligns well within this concept
is peer to peer (P2P) energy trading, where homeowners
(analogous to peers in this context) can utilize their DERs
to trade renewable energy amongst neighbors. The role of
a traditional homeowner as an end consumer is, therefore,
transformed into a prosumer that is capable of buying and
selling electricity at its discretion. The trading process is
facilitated by a virtual energy marketplace by enabling home
owners to place energy ”bids” for each DER per each discrete
market interval during the day, and a market clearing process
is used to determine whether the DER wins its submitted bid
and operates at its preferred setting [4]. As such, P2P energy
trading systems inherently balance local power mismatches,
while also opening up new revenue streams for homeowners
[5].

Yet, there are three major concerns with conventional P2P
energy trading platforms that revolve around auditability,
privacy, and security [6]. In a decentralized P2P system, it is
challenging to verify the correctness of energy transactions
amongst peers without access to the peers historical records.
However, if historical records of peers are indeed made
available, this raises severe privacy concerns that would
significantly inhibit peer participation [7]. An alternative
solution would be to use a trusted, central intermediary to
verify all peer transactions, however, this exposes a single
point of failure and renders the system insecure. Given these
factors, there exists a major trust issue with disparate peers



exchanging in energy trades over an unsecured, untrusted
platform.

Recently, blockchain technology has been used to address
the aforementioned challenges in P2P environments. A
blockchain is a type of distributed ledger, where each peer
maintains a local copy of the ledger and participates in a
consensus process to verify all transactions made by all
peers. Transactions submitted to the blockchain during a
given time period are first encrypted to hide the identity of
peers associated with the transaction, collected in a discrete
block of data, verified by peers against a set of rules that
the network is governed by, and then appended to the
end of the ledger in a tamper-proof fashion. Transactions
are generated and verified by smart contracts, which are
software applications that are deployed to the blockchain and
auto-execute based on the state of the ledger. Given these set
of properties, blockchains are used as the transactive layer
in P2P energy trading because they i) obviate the need for
a central intermediary to facilitate/verify all transactions, ii)
protect the privacy of peer transactions using specialized
encryption techniques, and iii) do not expose a single point
of failure. An example of a blockchain based P2P energy
trading system can be seen in Fig. 1, where each smart
home is a peer on the blockchain network, and utilizes the
ledger to store energy measurements and details of trading
transactions. Smart contracts auto-execute the business logic
of clearing the market and administering the market in a
trustless manner.

Blockchain based energy trading is receiving a great
deal of attention in practice and literature [8]–[10]. The
aforementioned work, however, uses a public blockchain
implementation (mainly Ethereum and Bitcoin) that is open
for the public to join, and requires every single participant
to verify all transactions in return for incentives (referred
to as mining). As such, public blockchains have significant
scalability issues, as well as concerns with the sheer amount
of energy the mining process consumes. For example, the
energy consumed from Bitcoin mining in the year 2017 was
equivalent to the annual energy consumption of Ireland, which
is in excess of 30 TWh [11]. On the other hand, permissioned
blockchains are invitation-only, and only require a subset
of participants to verify transactions, leading to higher
transaction throughput [12].

Consequently, this paper proposes a permissioned
blockchain implementation for a P2P energy trading
system for residential communities, where individual home
owners are able to place energy bids for their DERs on the
blockchain ledger for discrete time intervals. After all bids are
collected, the market is cleared via a double auction method
that is implemented as a smart contract, and individual DERs
are sent control signals that determine their control setting for
the specified market interval. Two sets of experimental results
are carried out to test the efficacy of the proposed system.
The first set of results are based on a single community of
eight homes using real-world data, while the second set of
results are of a real-world implementation within a Canadian
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Fig. 1. An example blockchain P2P energy trading network.

microgrid of 4 homes. The simulated results show that the
proposed system is able to reduce peak demand by 46% and
reduce electricity bills for the community by 6% per week.

The organization of the paper is as follows. Section II
presents the mathematical formulation of the DERs, while
Section III covers various bidding strategies used by the
home owners and details the market clearing price algorithm.
Section IV covers the blockchain implementation of the
system, Section V provides detail on the experimental results,
while Section VI concludes the paper and summarizes it’s
main contribution.

II. MODELING OF SMART HOME DERS

Each smart home, designated by subscript m, may possess
any combination of DERs, designated by subscript n. The
following subsections describe the mathematical modeling of
PV, BESS and EV units. The modelling of the ST can be found
in [13], and is left out due to the length of the heat transfer
equations.

A. BESSs and EVs

The mathematical modeling for BESSs and EVs is quite
similar and has been combined into one section to save
space. The main constraints for BESS/EVs are that the power
requirement should remain within the maximum and minimum
limits of its onboard inverter, and that its state of charge (SoC)
should remain within the recommended manufacturer’s limits.
One additional constraint for an EV is that it should reach a
specified SoC at a certain time before a specified departure
time. These three constraints are shown in (1)-(3), while the
equation for the calculation of the current SoC is shown in
(4). It should be noted that the terms BESS and EVs can be
used interchangeably in this subsection, except for in (3), and
that for the purposes of this manuscript, the EV is assumed to
have only charging capability.

PMIN
BESS,m,n ≤ PBESS,m,n(t) ≤ PMAX

BESS,m,n (1)

SoCMIN
BESS,m,n ≤ SoCBESS,m,n(t) ≤ SoCMAX

BESS,m,n (2)

SoCDep
EV,m,n(t+ ω) ≥ SoCReq

EV,m,n(t) (3)



SoCBESS,m,n(t+ 1) = SoCBESS,m,n(t)+(
χm,n · ηm,n +

(1− χm,n)

ηm,n

)
PBESS,m,n(t) (4)

where, {PMIN
BESS , P

MAX
BESS} are the minimum and maximum

power limits, PBESS(t) is the instantaneous power re-
quirement, {SoCMIN

BESS , SoC
MAX
BESS} are the minimum and

maximum SoC limits, SoCBESS(t) is the current SoC,
{SoCDep

EV , SoCReq(t)} are the SoC at departure time and the
SoC required before departure time, respectively, χ is a binary
variable that represents 1 for charging mode and 0 otherwise,
and η is the charging/discharging efficiency.

B. PV

The PV system consists of a PV array that generates direct
current (DC), and is coupled with an inverter that converts the
DC to alternating current (AC). The DC power generated from
the PV array can be found as follows [14],

PDC
PV,m,n = PRT

PV,m,nIRR(t)FT (Tm.n)(t) (5)

where, PDC
PV is the DC power generated by the PV array, PRT

PV

is the nameplate rating of the PV array, IRR is the current
level of irradiance in kW/m2, T is the current temperature in
◦C, and FT (T ) is an interpolated temperature factor that can
be found in [14]. The AC power output of the PV system can
be found by multiplying the efficiency of the inverter with the
DC power output as follows

PPV,m,n(t) = PDC
PV,m,n(t)ψm,n (6)

where, PPV,m,n is the final AC output power of the PV system,
and ψm,n is the inverter efficiency that can be interpolated
using methods and data found in [14].

III. MARKETPLACE DESIGN

A. Review of Conventional MCP Calculation

The conventional strategy of computing the MCP of an
electricity market is via a double auction, where potential
sellers (DERs) and buyers (loads) of energy simultaneously
submit energy bids to an auctioneer for discrete time slots
during the day [15]. The auctioneer arranges the generator
bids in ascending order of price, does the reverse for the
load bids, and computes the intersection between the two
resultant curves to find the MCP. For generators, bids that are
below and to the left of the MCP are granted, and for loads,
bids that are above and to the left of the MCP are granted.
Formulating the MCP in this way results in the merit-order
effect, where the highest bids of energy demand are satisfied
by the most inexpensive generators. This is particularly true
for markets with high penetrations of PV energy, since PV
systems have very little production cost, and can therefore be
used to accommodate more demand at lower prices [16]. An
example bidding process is illustrated in Fig 2, where the MCP
is shown for a system with limited (MCP1) and high levels of
DER penetration (MCP2), respectively. It can be seen that in
the second scenario, the merit order effect is greatly enhanced
due to the greater influence of DER generation, resulting in a

Fig. 2. Merit order effect enhanced when more DERs submit energy bids.

Fig. 3. Example bid curves of Smart Thermostats.

lower MCP ($0.07 versus $0.11) and greater system demand
being able to be serviced (1.8 kWh versus 0.8 kWh).

B. Proposed Bidding Strategies for Controllable DERs

In this paper, bidding strategies are defined for the con-
trollable DERs, which are STs, BESSs, and EVs. PVs are
assumed to have static bids as shown in Fig. 2, and are not
discussed within this paper. In general, an energy bid is a
reflection of how much a DER owner is willing to pay for
the sacrifice of something that holds value, which can be
modeled by a bid curve. In the case of STs, the item of value is
the flexibility of thermal comfort, whereas for EVs, the item
of value is the flexibility of the desired SoC dictated by its
arrival and departure times. BESSs, by virtue of being able
to both consume and generate energy, are able to formulate
their strategy based on the level of SoC and opportunities to
generate revenue depending on the current price of electricity.
Generalizing the above, two bidding strategies are defined as
selfish, and helpful, where a selfish bidding strategy tends to
produce inflexible bid curves, and a helpful bidding strategy
tends to produce less steep, flexible bid curves that are



Fig. 4. Example bid curves of selfish and helpful EVs.

willing to sacrifice value in return for financial gain. It is
worthwhile mentioning that the more selfish a bid curve is
for a particular DER, the higher its energy demand and cost
is for the homeowner, and the less impact the DER can have
in participating in initiatives to reduce peak demand.

For example, two ST bid curves are depicted in Fig 3,
where the bid curve symbolizes the incremental price a ST
is willing to pay as a function of thermal discomfort, that is,
as the deviation from the desired setpoint increases. Typical
distribution system energy prices (time of use - TOU), along
with a sample PV bid are also depicted in the figure, where the
intersection of the ST bid curve with each subsequent supply
curve represents the price that the ST is willing to pay per unit
of temperature deviation from the setpoint. In this example,
both bid curves become more steep as the deviation from the
desired setpoint increases. However, it can be seen that bid
curve 1 is much more steep than bid curve 2, and is willing
to pay any price for cooling energy when the temperature
deviation reaches 0.5 ◦C. As such, bid curve 1 is classified
as being more selfish than bid curve 2.

An example of selfish/helpful bidding strategy for EVs is
shown in Fig. 4, where relevant parameters of time are defined
as tArr (the home arrival time of the EV), tBid (the time at
which the EV places a bid), tC,max (the maximum time the
EV can wait before it must charge at full power to reach a
desired SoC based on the a time of departure), and tDep (the
departure time of the EV). The selfish EV bid curve shows
that it will have the EV charge instantaneously upon tArr and
is willing to pay any electricity rate to charge. On the other
hand, the helpful EV bid curve is more flexible, willing to
bid in the market by ramping its energy demand until tC,max,
where its bid curve converges with the selfish bid curve since it
will need maximum charging power to the desired SoC before
tDep. The tC,max per EV can be calculated as,

tC,max =
[SoCMAX

EV − SoCEV (t)

η · PMAX
EV

]
(7)

where the subscript {m,n} is dropped for brevity.
The selfish/helpful bids for BESS revolve around financial

incentive. As such, a selfish BESS will charge only in off-

Fig. 5. Architecture of proposed blockchain based energy trading system.

peak periods, or when there is excess PV energy available,
and attempt to discharge at on-peak periods to gain maximum
revenue. On the other hand, a helpful BESS will look to charge
only when there is excess PV energy available, and discharge
when its local load exceeds its local demand .

IV. PERMISSIONED BLOCKCHAIN IMPLEMENTATION

The proposed system is implemented using Hyperledger
Fabric (HLF), which is an enterprise-grade permissioned
blockchain framework. Unlike public blockchain implemen-
tations, HLF allows the overall system to be segmented into
private channels, where peers may conduct transactions that
are hidden from other channels. Each channel is designated its
own ledger, in which the peers are responsible for maintaining
the ledger state. Segmentation allows for better scalability and
abstraction, since all peers are not required to validate all trans-
actions throughout the entire system. A high-level architectural
block diagram of the proposed system is illustrated in Fig.
5, where communities are segregated into their own channel,
each self-governed by the peer nodes of the smart homes in
the channel. A description of the system components are given
below, in context of the proposed system:
• Peer Node: A node on the blockchain network that

retains a copy of the ledger and participates in the consen-
sus/verification process. A node within the energy trading
platform would be an instance of a smart home.
• DApp: The front-end application that allows a smart

home to interact with the blockchain, including placing bids,
monitoring bid status, submitted energy measurements, and
facilitating automated control of DERs.
• Ledger: Decentralized database that stores shared system

data, including all energy measurements and energy bids for



Fig. 6. Single line diagram of the Kortright Centre Microgrid

all smart homes.
• Smart Contract: Set of functions that auto-execute based

on ledger data. The functions include opening a new market
interval, facilitating energy bids, and executing the MCP
procedure.

As such, a smart contract is triggered every time a new
market interval starts, and begins to accept energy bids and
measurements from the smart homes during this period. All
bids are cross-verified by the peer nodes, and submitted to
the ledger, where the smart contract finds the MCP of the
current bid, and sends control signals back to the smart home
to automatically toggle ON/OFF the participating DERs.

V. EXPERIMENTAL RESULTS

The experiments were conducted using models and real-
world implementation of infrastructure at the Kortright Centre
Microgrid (KCM), an initiative of the Sustainable Technolo-
gies Evaluation Program (STEP) at the Toronto and Region
Conservation Authority (TRCA), located in Vaughan, Canada.
As seen in Fig. 6, The KCM is equipped with 4 smart homes,
75 kW of renewable power capacity, 80 kWh of storage, and
two ST systems. Two sets of experiments were carried out to
validate the proposed system. The first set of results are based
on a simulated, 8 home community, where the typical load
profile of Smart Home ’A’ was used as the baseline model
for daily demand. The second set of results involved physical
power transfers using the existing assets at the KCM.

A. Simulation Results

In the simulated experiments, each smart home is assumed
to have all 4 DERs installed, and a sensitivity analysis is
performed to determine the impact of selfish/helpful bidding
strategies for BESS and EVs on aggregate community peak
demand and cost reduction based on TOU prices in Ontario.
The impact of the BESS on the aforementioned objectives
can be seen in Figs. 7 and 8, where the community peak
demand and weekly electricity bill reduces almost linearly as
the percentage of helpful BESSs increase. When comparing
8 selfish (S) BESSs against 8 helpful (H) BESSs, there is a

Fig. 7. Helpful BESS bidding strategies reducing community peak demand.

Fig. 8. Helpful BESS bidding strategies reducing community energy cost.

reduction in peak load from 102 kW to 55 kW (46%), and
a reduction in weekly community cost from $252 to $236
(6%). The reduction is seen primarily because a selfish BESS
attempts to discharge its energy during peak times of demand,
while a helpful BESS seeks to charge using available PV
energy during this time.

When adding EVs to the experiments, it was found that
the optimal bidding combination was 8 helpful BESSs, and
a combination of 4 helpful and 4 selfish EVs. A bidding
strategy of 8 helpful EVs with identical bidding curves simply
creates a secondary peak during the off-peak hours of the
night, which is commonly known as a rebound effect [17].
As such, a combination of 4 helpful and 4 selfish EVs helps
distribute the loading impact of the EVs throughout the night.
In totality, when the average community peak load is analyzed
within three categories (baseline, all selfish agents, and optimal
bidding), the resultant peak demands are 110 kW, 102 kW, and
47 kW, which represents a reduction of 58% from optimal
bidding strategy compared to the baseline.



Fig. 9. DApp dashboard of the proposed platform.

Fig. 10. Real-world demonstration of BESS operation at the microgrid.

B. Real-world Result

The front-end dashboard of the proposed system can be seen
in Fig. 9, where the dashboard allows a user to manually open
a new market interval, submit bids for any DER within the
microgrid, as well as close the market interval to compute the
MCP and take corresponding action for the winning DER bids.
The dashboard also allows real-time visualization of power
flow throughout the microgrid. A controlled experiment was
conducted at the KCM using the PV of the Sunny Hut and the
BESS in the Wind Hut, where a market interval was executed
every 5 minutes and automated the operation of the BESS
depending on its bid. The result of the experiment can be
seen in Fig. 10, where the PV production and demand at the
PCC of the microgrid and the main grid is plotted against
time. The BESS cycles between the ON (charging) and OFF
(discharging) state every consecutive market interval, as the
PCC demand reduces by approximately 6 kW when the BESS
is charging and increases 6 kW when the BESS is discharging.

VI. CONCLUSION

This paper proposes a blockchain based energy trading
platform that was implemented on a permissioned blockchain
infrastructure and allowed energy trading amongst DERs.
The proposed platform reduced the community peak load by

46% and reduced the weekly electricity bill by 6%. A real-
world experiment was also conducted to validated the energy
transfer between DERs within a Canadian microgrid. Future
work includes expanding the algorithm to accommodate inter-
community trading with the addition of ancillary services to
the distribution grid.
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