
QoS-Aware Object Replica Placement in
CDNs

Zhiyong Xu
Suffolk University

zxu@mcs.suffolk.edu

Laxmi Bhuyan
University of California, Riverside

bhuyan@cs.ucr.edu

Abstract— Recently, Content Distribution Networks
(CDNs) have attracted a great deal of attention from both
the industry and academic communities. We design effi-
cient object replication algorithms to achieve the optimal
performance while not violating clients’ QoS requirements
in CDN. We use a three-stage mechanism: First, object repli-
cation constraints to meet the QoS requirements are gen-
erated. Second, a minimal object replication set (MORS),
which can satisfy the constraints with the minimal number
of replicas on each server, is created. Finally, more objects
are replicated on the servers with spare space to further im-
prove the performance. We propose a number of heuristic
algorithms and conduct trace-driven experiments to evalu-
ate the performance.

I. INTRODUCTION

With the successes of Akamai [1] and Digital Island [2],
CDNs have attracted a great deal of attention from both the
industry and academic communities. In CDN system, Replica
Placement algorithm (RP) has great impact on the overall per-
formance. According to the replication granularity, CDN sys-
tems can be categorized into two types: full replication archi-
tecture (FD) and partial replication architecture (PD). Massive
research efforts have been carried out on the replica placement
problem on both FD and PD architectures [3], [4], [5], [6].

In this paper, we investigate the techniques of object replica
placement algorithms to support Quality of Service (QoS) in PD
architecture. Given certain amount of system resources, our ob-
jective is to optimize an average performance metric (such as
access latency) for all the clients while meeting different QoS
requirements. A three-stage mechanism is introduced. First, we
generate object replication constraints according to the QoS re-
quirements. Second, we create a minimal object replication set
(MORS) which can satisfy all the replication constraints with
the minimal number of copies of each object and decide the lo-
cations in MORS. This gives CDN service providers an intuitive
impression on how many servers and how many resources on
each server are needed for providing certain QoS requirements.
Finally, we store more replicas on the servers which still have
spare space to further improve the performance. We show such
a problem is a NP-complete problem. A number of heuristic
algorithms are proposed. The main contributions of this paper
are:

• We formulate QoS-Aware object replica placement prob-
lem in CDN and prove it is a NP-complete problem;

• We define the concept of MORS. A MORS represents the
minimal resource demand for certain QoS. We define an
optimal MORS is the MORS which achieves the best per-
formance among all the MORSs;

• We develop several heuristic algorithms including random,
popularity and greedy algorithms, to generate MORS. We

conduct simulations to evaluate the performance of those
algorithms;

• We propose a flexible three-stage mechanism. Heuristic
algorithm combinations are introduced. We compare the
performance of various algorithm combinations with the
super optimal algorithm. The greedy algorithm is proved
to be the best.

The paper is organized as follows: Section II describes the prob-
lem. Section III presents the heuristic algorithms. Section IV
evaluates the performance. Section V summaries the previous
related works, and we conclude in Section VI.

II. PROBLEM FORMULATION

Object replication problem can be formulated as a graph
problem that approximates the overall performance of a certain
metric (Such as minimal storage cost, minimal user access la-
tency or network bandwidth consumption).

Consider a CDN, a set of objects are replicated and dis-
tributed. For each object, at most one copy can be stored on
each server. However, multiple copies may be stored on differ-
ent servers. Each server only has limited storage capacity and
can not hold all the objects. There are a large number of clients
with different QoS requirements. We focus on the design of an
efficient object placement algorithm to determine the number of
copies for each object and the locations for these copies subject
to each server’s capacity restriction. Our objective function is to
minimize the end user retrieve cost while not violating the QoS
requirement for each client.
A. System Cost Model

The object replication problem can be formally stated as fol-
lows: In a CDN system, we have N content servers. The storage
capacity on each server is denoted by Sk, k = 1,2,...,N). These
servers are used to keep the copies of a set of objects. Assum-
ing the number of objects in the system is J, and the size of
each object is denoted by Oj , j = 1,2,...,J. For simplicity, we
assume the aggregated capacity of all the servers is much big-
ger than the overall storage requirement (which is the case in
reality):

∑J

j=1
Oj <

∑N

k=1
Sk, and for any k ∈ [1, N], Sk <

∑J

j=1
Oj . Thus, the server storage shortage problem seldom

happens. Before we define any QoS related constraints, we give
the storage constraints first. We define the following variable:
xjk, to denote the relations between the servers and the objects
to be stored. If object j has a copy on server k, then xjk = 1;
otherwise, xjk = 0. Based on these definitions, we have:

For any server k, J∑

j=1

Ojxjk ≤ Sk (1)

For any object j,

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 862 0-7803-9415-1/05/$20.00 © 2005 IEEE

1 ≤
N∑

k=1

xjk ≤ N (2)

Assume M clients (Ti, i = 1,2,...,M)) Here. For any client,
retrieving an object introduces some cost. This retrieve cost is
determined by the network topology and the network conditions
between the client and the server which used to fetch the object.
For simplicity, we assume that all the objects have the same size,
and the retrieve cost is proportional to the distance between the
client and that server. Thus, we define another variable: Cik, to
represent the cost for the client i to retrieve an object from server
k. For any client, it is desirable to retrieve all the requested
objects from the server which has the minimal distance to it.
We define the server k

′
is the designated server for client i if it

has a smaller Cik
′ than any other servers. However, due to the

storage capacity limitation, it is very likely that the designated
server does not contain all the objects a client wants to access.

We define the variable: Pij to represent the request proba-
bility that client i will request object j. If we do not consider
QoS requirements, the objective of the replica placement can be
formulated as choosing the suitable values for all the xjk in the
matrix X = (xjk), j = 1, 2, ..., J and k = 1, 2, ..., N , that we
can achieve the minimal average retrieve cost. Assume the cur-
rent replica placement is A. Then, for client i to access an object
j, the minimal cost is:

Pij ∗ mink∈[1,N]∧xik=1(Cik) (3)

mink∈[1,N]∧xik=1(Cik) represents the cost for client i to
fetch object j from the nearest server which has the object (this
server may not be the designated server if it does not have the
requested object). Thus, considering all the clients and all the
objects, the minimal overall cost C(A) for an object replication
deployment A is:

C(A) =

M∑

i=1

J∑

j=1

Pij ∗ mink∈[1,N]∧xik=1(Cik) (4)

B. QoS requirements
To provide QoS guarantees, we divide the clients into mul-

tiple service classes according to their different QoS require-
ments. In general, higher QoS guarantee stands for smaller ac-
cess latencies. Clients in higher classes should receive better
performance guarantee than the clients in lower classes. We de-
fine the QoS requirement with the time of retrieving an object.
Thus, QoS guarantee for a service class means: for any clients
belongs to this class, retrieving an object must be finished within
a certain period of time. Assume we have D service classes
(1,2,...,D). A maximal cost constraint is set for each class, de-
noted by MCCD . We have the following equations:

MCCD ≤ MCCD−1 ≤ ... ≤ MCC1 (5)

Our goal is to find a matrix X = (xjk) which can achieve the
minimal cost C(A) subject to the following constraints:

For client i in class d, for any Pij > 0, to meet the QoS, the
system must guarantee at least one server, which the cost for i
to access an object from it is less than MCCd, exists, and that
server has a copy of object j.

∃k ∈ [1, N], (xjk = 1) ∧ (Cik ≤ MCCd) (6)

C. NP-Complete Problem
In theory, the above problem is a decision problem and it is

NP-complete. To prove this, first, we will show that it is a NP
problem. Given a target overall cost C

′
(A), we need to find out

whether a candidate solution exists such that

M∑

i=1

J∑

j=1

Pij ∗ mink∈[1,N]∧xik=1(Cik) ≤ C
′
(A) (7)

can be computed in polynomial time.
Examine a candidate solution satisfies QoS or not can be done

within polynomial time since the shortest path between clients
can servers can be computed in polynomial time. Given a can-
didate solution A, it is very easy to verify the total computation
cost is less than the bound C

′
(A) or not within the polynomial

time. Thus, this problem is NP problem. Next, if we consider a
special case that all the clients are belonging to the same service
class. Only one server k

′
can be used to store objects and the

request probability for any object is the same. The problem is
reduced to:

Minimizing:
C(A) =

M∑

i=0

Cik
′ (8)

subject to:
J∑

j=1

Ojxjk
′ ≤ Sk

′ (9)

Clearly, this problem is identical to the well-known NP-
complete Knapsack problem [7].

III. OBJECT PLACEMENT ALGORITHMS

In this section, we present a number of algorithms for solving
the QoS-Aware object placement problem. Since no optimal so-
lution is feasible, we have designed several heuristic algorithms
that utilize the available information in different ways. We use
the average retrieve cost as the metric to evaluate the perfor-
mance. We take a three-stage approach to make the placement
decision.

A. Determine the Object Placement Constraints
In the first stage, we must determine the replica placement

constraints to meet the certain QoS requirements. Assume client
i belongs to class d, the maximal cost allowed in class d is
MCCd, and the set of the objects that client i will retrieve is
Q. Then, for any object j ∈ Q, a replica must be presented on
a server which the cost for client i to retrieve an object from
it is less than MCCd. We determine the constraints as follows:
each time, the algorithm selects a client, denoted by i. We divide
the servers into two partitions: the servers which client i has the
retrieve cost lower than MCCd, and higher than MCCd. For
the first set of servers, we will generate a constraint Cons(i,j)
for client i and object j: For object j, which Pij �= 0, we must
store a copy on at least one of these servers. This process con-
tinues until we generated all the placement constraints for all the
clients and all the objects.

C1

3

S1

4

S3 S4

S2

7
13

12

17

C2

16
6

S5
20 25

Fig. 1. Determining the object placement constraints

Figure 1 shows a simple example. Consider a CDN system
which contains only two clients C1 and C2, and five servers S1,
S2, S3, S4 and S5. C1 and C2 belong to class d1, and MCCd1 is

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 863 0-7803-9415-1/05/$20.00 © 2005 IEEE

10. The distances between clients and the servers (retrieve cost)
are shown in the figure. Both Clients C1 and C2 have the same
probability to retrieve object j1 in the future. Clearly, since the
distance between C1 and S1 is 3, C1 and S2 is 4, both are less
than MCCd1. For C1, either S1 or S3 must keep a copy of j1,
we denote this constraint with x1,j1 ∪ x3,j1. No constraint on
servers S2, S4 or S5 since the distance between C1 and any of
them is larger than MCCd1. Whether they have a copy of j1 or
not has no effect on satisfying C1’s QoS requirement. Similarly,
for C2, either S2 or S4 must keep a copy. We can generate
another constraint, represented by x2,j1 ∪ x4,j1. No constraint
on S1, S3 or S5. In summary, to meet the QoS requirement of
C1 and C2, we have to store at least two copies of j1. One copy
must be resided on S1 or S3 and another must be stored on S2
or S4:

(x1,j1 ∪ x3,j1) ∩ (x2,j1 ∪ x4,j1) (10)

The generated constraints will be used to assign object copies
on certain servers in the second stage. We use (S1,S2) to denote
that both S1 and S2 have a copy of j1. For the above example,
no matter how many copies are replicated on these five servers,
one of the following server placement combinations: (S1,S2),
(S1,S4), (S3,S2) and (S3,S4) must be chosen. Other possible
placement decisions could be (S1,S2,S4), (S2,S3,S4,S5) or even
(S1,S2,S3,S4,S5). However, only two replicas are necessary, the
additional copies are redundant.

B. Minimal Object Replication Set (MORS)
In the second stage, we create a Minimal Object Replication

Set (MORS) according to the placement constraints. A MORS
is the smallest replica set which containing the minimal number
of copies for each object on different servers to meet all the QoS
requirements. In the above example, any of (S1,S2), (S1,S4),
(S3,S2) and (S3,S4) which only has two servers is a MORS.

Different MORSs result in different performance. If we store
a copy of j1 on both S1 and S2, the overall cost for C1 and C2 to
retrieve j1 is 3 + 6 = 9. While in (S1,S4), (S3,S2) and (S3,S4),
the corresponding costs are 10, 10 and 11. We define the MORS
which has the minimal overall cost as the optimal SORS. Here,
(S1,S2) is the optimal MORS. Finding the optimal MORS is
also a NP-complete problem (it can be easily derived from the
previous proof).

C. Random MORS Algorithm (RA)
In random algorithm, the objects are assigned to the servers

randomly subject to the QoS constraints and the server storage
restrictions. Figure 2 shows the pseudo code. The algorithm is
performed on the objects one by one. Each time, we pick an
object (denoted as j) with the uniform probability. Then, we
choose a client (denoted as i) which has Pij �= 0 with the uni-
form probability as well. By applying the constraint Cons(i,j), a
set of servers which can satisfy the QoS requirement for client
i and object j are determined. System examines the availability
of j in this set, if none of these servers has a copy, it randomly
chooses a server which has enough spare space from this set,
and stores a copy. Otherwise, no operation is taken. We con-
tinue this procedure by randomly choosing another client until
all the constraints related to this object are checked. After that,
we move to another object (it is also picked with uniform prob-
ability), and repeat the same operation until all the objects are
checked. Finally, a MORS which can satisfy all the constraints
is generated.
D. Popularity MORS Algorithm (PA)

Random algorithm does not use workload characteristic in-
formation to make placement decision. Popularity MORS algo-
rithm tries to determine the best locations for each object based

Input: Servers N, Clients M, Objects J

Procedure Random MORS Generation Algorithm

Output: MORS
 FinishedClient=null;
 StartClientSet={1,2,...,M};
 FinishedObject=null;
 StartObjectSet={1,2,...,J};

 randomly choose one object i from StartObjectSet;

While(StartObjectSet!=NULL)
 {

 while (StartClientSet != null)
 {
 choose one client j;

 if (any server in serverset has the object j stored)
 break;
 else
 randomly choose one server to store object j;

 FinishedClient+=i;
 StartClientSet−=i;

 Placement Constraints set Cons(i,j)

 serverset=apply Cons(i,j);

 }

 FinishedObject+=j;
 StartObjectSet−=j;

 StartObjectSet={1,2,...,J};
 }

end procedure

Fig. 2. Random MORS Algorithm

on its popularity. First, System sorts all the objects in decreasing
order of popularity according to their aggregated request rates.
The placement decision process starts from the object (denoted
as j) which has the highest popularity. The algorithm also sorts
the clients in decreasing order of popularity according to their
request rates for j. Then, it picks i with the highest request rate,
and examines the corresponding constraint Cons(i,j), to gener-
ate the set of servers which can satisfy this QoS constraints. If
any of these servers has a copy, we move to the next client. Oth-
erwise, we need to choose one server from the set to store j. The
following mechanism is used to determine this server: For each
server, we calculate the aggregated request rates for j on clients
which use this server as the designated server, and sort these
servers in decreasing order. The server which has the highest
rate is chosen first. If this server does not have enough spare
space, we move to the next server and store a copy. After all
the constraints are checked, the replica placement decision for
this object is made. We move to the next object and continue
this procedure until all the objects are checked. This algorithm
has higher computational overhead than the random algorithm.
However, it can achieve better performance.

E. Greedy MORS Algorithm (GA)
In greedy algorithm, as Popularity algorithm, system sorts

the objects and the clients in the decreasing orders of popular-
ity. Then, each time, we start from the first object j and the
first client i, applying the constraint Cons(i,j). After getting the
server set which contains all the servers satisfying the constraint,
if any of these servers has a copy, system moves to the next
client. Otherwise, we calculate the retrieve cost for each server
as if it is used to store j. We pick the server which generates the
lowest cost to store a copy. This process continues until all the
clients are checked. Thus, in each step, we choose the server
which can introduce the maximum cost reduction.

F. Achieving Better Performance
By creating a minimal object placement set, system defines

the minimal resource required to meet the QoS requirements.
However, it does not achieve the best performance. In the third
stage, we use the spare space on servers to store more objects
and improve the performance.

The placement problem for additional copies is similar to the
previous problem. We could adopt the above heuristic algo-
rithms directly. There are two differences: First, in previous

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 864 0-7803-9415-1/05/$20.00 © 2005 IEEE

cases, system starts from an empty set. Here, we start from the
condition that each server already stored a bunch of objects de-
termined by a MORS. Second, in previous cases, locations of
the copies are subjected to the QoS constraints. Here, this re-
striction does not exist.

1) Random Algorithm (RA): Each time, we choose one
object and one server with uniform probability, and store this
object on that server in case no copy of this object exists.

2) Popularity Algorithm (PA): Each server stores the
most popular objects for its clients. The placement decisions
are made by the servers independently. Each time, we choose
a server and generate the aggregated request probabilities of all
the objects for the clients which use this server as the designated
server. We sort these objects in the decreasing order of popular-
ity. Then, we store as many objects as possible if they are not
stored on this server yet.

3) Greedy Algorithm (GA): Here, we calculate the re-
trieve costs by choosing one server and one object each time.
The server-object pair which yields the lowest cost is chosen. A
copy of that object is stored on that server. After the new place-
ment is generated, we do the same process by re-calculating all
the costs under this new placement. We iterate the procedure
until all the storage spaces are exhausted.

G. Super Optimal Algorithm
We also propose a super optimal algorithm. In this algorithm,

we do not set the storage capacity limitation. Each server can
hold a full copy of all the objects. Thus, a client can get any
object it wants from the designated server with the minimal re-
trieve cost introduced. We believe such a system can yield the
best performance. This algorithm is used as an upbound refer-
ence to evaluate the proposed solutions.

H. Summary
In summary, we develop a three-stage mechanism for QoS-

Aware object replica placement. We could generate several
strategies by using different algorithm combinations. For sim-
plicity, we use RA-RA to denote the combination of using the
random MORS algorithm in the second stage and also using the
random algorithm in the third stage. The following combina-
tions can be applied: RA-RA, RA-PA, RA-GA, PA-RA, PA-PA,
PA-GA, GA-RA, GA-PA and GA-GA.

.

IV. PERFORMANCE EVALUATION

We use Transit-Stub topology (TS model) [8] as the major
network model. We generate network models with two different
sizes: a TS network with 300 nodes and another one with 1000
nodes. The average node distances in 300-node and 1000-node
networks are 161 and 266, respectively.

We evaluate the performance of three different MORS gener-
ating algorithms. We also compare the overall performance of
nine combinations: RA-RA, RA-PA, RA-GA, PA-RA, PA-PA,
PA-GA, GA-RA, GA-PA and GA-GA. The web proxy logs ob-
tained from NLANR are used as the workload traces. The data is
collected from UC server between Feb 21st and Feb 24th, 2003.

A. MORS performance
We start by identifying the performance of MORS generated

by various algorithms. The results are shown in figures 3 and 4.
To make it more clearly, we show the results as the ratio between
the average retrieve cost to the average node distance.

We observe that the greedy MORS algorithm (GA) achieves
the best performance. For 300-node network, the average re-
trieve cost is about 58% to 63% of the average node distance.

50

60

70

80

90

5 10 15 20 25 30
Server storage size (% of data set)

Ave
rag

e re
trie

ving
 cos

t (%
 of a

ver
age

 no
de

dist
anc

e)

RA MORS Algorithm

PA MORS Algorithm

GA MORS Algorithm

Fig. 3. MORS Performance , 30 servers, 150 clients

40

50

60

70

80

5 10 15 20 25 30
Server storage size (% of data set)

Ave
rag

e re
trie

ving
 cos

t (%
 of

ave
rag

e no
de

dist
anc

e)

RA MORS Algorithm

PA MORS Algorithm

GA MORS Algorithm

Fig. 4. MORS Performance, 200 servers, 500 clients

Popularity MORS algorithm (PA) also achieve good perfor-
mance, which is slightly worse. Random MORS algorithm (RA)
has the worst performance. The average cost in RA is about
30-40% more. This result shows, even with the smallest set of
objects replicated, the locations of the replicas must be carefully
selected. It is proven that utilizing workload characteristic infor-
mation to make the replication decision is important. Both GA
and PA take this information into account. Compare two differ-
ent size networks, for each algorithm, the average retrieve cost
achieved in 1000-node network is much less than in 300-node
network if we measured with the ratio between the average re-
trieve cost and the average node distance. This is because of the
higher density of servers in the second case.

B. Overall Performance

40

50

60

70

80

90

100

110

120

130

5 10 15 20 25 30
server size (% of data set)

Av
era

ge
 re

tri
ev

ing
 co

st

RA-RA
RA-PA
RA-GA
PA-RA
PA-PA
PA-GA
GA-RA
GA-PA
GA-GA
SuperOptimal

Fig. 5. Overall performance comparison (30 servers, 150 clients)

MORS is not enough to achieve the best performance. In the
second experiment, we evaluate the overall retrieve cost. We
compare nine different heuristic algorithm combinations with
super optimal solution and the results for 300-node network are
shown in Figure 5. We do not show the results for 1000-node
network experiments because it generates the similar behavior.
We observe that, the super optimal algorithm achieves the best
performance because it does not have any storage constraints. It
outperforms all the other algorithms. Among all the other ap-
proaches, using GA algorithm in the third stage yields good re-
sults. GA-GA achieves the best performance. We believe this is
because GA algorithm maximizes the performance gain in each
iteration when a replica placement decision is made. From the
results, we also observe that, by using GA in the third stage,
it is not very important which algorithm is used in the second

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 865 0-7803-9415-1/05/$20.00 © 2005 IEEE

stage. Even RA-GA can obtain very good performance (only
slightly worse than GA-GA). This proofs that greedy algorithm
is the best solution which can achieve the near-optimal perfor-
mance. Using PA algorithm can also achieve good performance,
although it is a little worse than GA algorithm, the computa-
tional complexity is much lower. Thus, using PA algorithm in
the third stage can be chosen as the best cost-effective option.
On the other hand, using RA algorithm in the third stage is to-
tally inadequate since it yields the worst performance no mat-
ter which algorithm is used in the second stage. As shown in
the figure, all the RA-RA, PA-RA and GA-RA combinations
have much worse performance than any other algorithm com-
binations. Even with a very large server storage size (30% of
the data set). The performance for these three algorithms is still
20-25% more than any other solutions. Among them, RA-RA is
the worst.

From the figure, we also find that using GA algorithm in the
second stage can yield better overall performance than using PA
algorithm in case the storage size is relatively small (5% or 10%
of data set). This proofs that GA can make the better decision
than PA algorithm. As the server storage size increases, this dif-
ference diminishes. This shows with a larger storage space can
be utilized, an approximately accurate decision is good enough
to achieve good performance. As the storage size increased to
25-30% of the data set, using GA or PA in the third stage can
achieve nearly the same performance as the super optimal solu-
tion. Thus, from this experiment, we can conclude that taking
the workload characteristic information into account in object
placement decision is important for the system to achieve the
near-optimal performance.

V. RELATED WORKS

There has been a considerable amount of researches to in-
vestigate the replica placement problem [9], [10], [11], [4], [6].
This problem can be further divided into server placement prob-
lem and object placement problem according to the replica gran-
ularity.

In server placement problem, the replica granularity is a mir-
ror server. Actually, this problem is a variant of the traditional
facility location problem. In [9], Liu et al considered the prob-
lem of placing replicas on a tree-based topology. In [4], Qiu et
al formulated this problem as uncapacitated minimal K-median.
They restrict the maximum number of replicas but do not restrict
the number of requests served by each replica. The study con-
ducted by Jamin et al [11] is similar to [4]. Their work found,
regardless of the placement strategies, increasing the number
of replicas is effective only for a very small number of repli-
cas. The results suggested that the AS-level fanout-based algo-
rithm should work as well as greedy algorithms, [10] used this
approach by exploring the impact of various replica and client
placement methods.

In [6], the authors investigated the object replication prob-
lem. The replica entity is a copy of object. The authors proven
that it is a NP-complete problem and proposed several heuristic
algorithms.

Karlsson et al. performed extensive evaluation of different
replica placement algorithms [12]. They concluded that web
caching is much more efficient approach if the update is fre-
quent. However, for content distribution problem, replica place-
ment algorithms are still necessary once properties such as avail-
ability, reliability, performance and bounded update propagation
have to be guaranteed.

Tang et al. [13] is the first work conducted on QoS-Aware
replica placement problem. They studied two classes of ser-

vice models: replica-aware and replica-blind service. l-Greedy-
Insert and l-Greedy-Delete heuristic algorithms are proposed.
While in this paper, we investigate the problem of minimizing
the client retrieve cost and meet the client QoS requirements.
Our work can be viewed as the compliments with theirs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the QoS-Aware object replication
placement problem in content distribution network. We proved
that it is a NP-complete problem and an optimal solution is
not feasible. To solve this problem, we proposed a three-stage
mechanism to achieve the best performance while meeting the
QoS requirements of different clients. We defined a minimal ob-
ject replication set (MORS) to represent the minimal system re-
source requirement for certain QoS guarantee. After a MORS is
generated, more objects are replicated on the spare server space.
A combination of three heuristic algorithms: random, popular-
ity and greedy are introduced to achieve the near-optimal per-
formance. We did extensive experiments to evaluate the perfor-
mance of different algorithm combinations and compare with
the super optimal solution. We observed that it is important to
take client access behavior into account when the system make
the object replica deployment decision. The neglect of this in-
formation will cause at least 30% to 40% system performance
degradation.

VII. ACKNOWLEDGEMENT

The work was partly supported by NSF grants CCF–
0233858, CNS–0509207 and CNS–0509440.

REFERENCES

[1] Akamai, “http://www.akamai.com.”
[2] Digital Island, “http://www.digitalisland.net.”
[3] P.Krishnan, D. Raz, and Y. Shavitt, “The Cache Location Prob-

lem,” IEEE/ACM Transactions on Networking, vol. 8, pp. 568–
582, Oct. 2000.

[4] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the Place-
ment of Web Server Replicas,” in Proceedings of IEEE INFO-
COM, (Anchorage, AL), pp. 1587–1596, April 2001.

[5] S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt, “Constrained
mirror placement on the internet,” in Proceedings of the INFO-
COM ’01 conference, pp. 31–40, Apr. 2001.

[6] J. Kangasharju, J. W. Roberts, and K. W. Ross, “Object replication
strategies in content distribution networks,” in Proceedings of the
6th Web Caching and Content Distribution Workshop, (Boston,
MA), June 2001.

[7] M. R. Garey and D. S. Johnson, “Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman,” 1979.

[8] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model
an internetwork,” in Proceedings of the IEEE Conference on Com-
puter Communication, San Francisco, CA, pp. 594–602, Mar.
1996.

[9] B. Li, M. Golin, G. Italiano, X. Deng, and K. Sohraby, “On the
optimal placement of Web proxies in the Internet,” in Proceedings
of the INFOCOM ’99 conference, Mar. 1999.

[10] P. Radoslavov, R. Govindan, and D. Estrin, “Topology-informed
internet replica placement,” in Proc. of the Sixth International
Workshop on Web Caching and Content Distribution, 2000.

[11] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, “On the
placement of internet instrumentation,” in Proceedings of IEEE
INFOCOM, (Anchorage, AL), pp. 295–304, April 2000.

[12] M. Karlsson and M. Mahalingam, “Do we need replica placement
algorithms in content delivery networks,” in 7th International
Workshop on Web Content Caching and Distribution (WCW), Au-
gust 2002.

[13] X. Tang and J. Xu, “On Replica Placement for QoS-Aware Content
Distribution,” in Proceedings of IEEE INFOCOM, (HongKong),
March 2004.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 866 0-7803-9415-1/05/$20.00 © 2005 IEEE

