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Abstract- The current bulk transit systems (e.g., buses) and
local perishable food distribution logistics, both suffer from
significant fuel inefficiency along with food wastage due to quality
degradation in the distribution pipeline. In this paper we present
a mechanism that exploits automated electric vehicles (AEVs) in
future smart cities and regions to provide both people transport
and fresh food distribution that minimizes empty miles of the
vehicles (and thus enhances transport efficiency) while meeting
the constraints on passenger transit time and food freshness. We
devise an optimization framework and show how it can be solved
using genetic algorithms in order to handle dynamic demands
for passenger transport/products, uncertain supply delays, and
variations in product availability. Performance evaluations with
extensive simulations show that flexibly deciding the AEV routes
improves the transportation efficiency by ∼24-78% whereas
improves the delivery quality by ∼2 times compared to the typical
fixed routes/schedules used both by regular passenger bus services
and by local distribution operations.

I. INTRODUCTION

Today’s distribution and transport logistics suffer from
significant inefficiency factors mainly due to lack of resource
and infrastructure sharing. According to some recent studies,
the current transportation efficiency is in the neighborhood of
10% [1]. In the traditional commodity supply chain delivering
fresh food, trucks often go either empty (to return the truck
and/or driver to their home location) or partially empty (due to
unavailability of suitable product or perishability concerns of
the carried food). This leads to largely avoidable distribution
costs, transportation carbon footprint, road congestion, delivery
delays, etc. Yet, a significant percentage of fresh food is wasted
due to real or perceived spoilage or loss of quality of fresh food
from farm to the end customer. This paper exploits the ongoing
technological developments to devise a combined mechanism
for both distributing perishable food and transporting people
in the context of smart urban areas.

One major obstruction to improving efficiency and decreas-
ing food waste is the lack of universal sharing of logistics,
particularly among the large vendors. However, the improving
technology and the pressures to reduce cost are resulting to
rapid growth of 3rd party logistics (3PL) and its derivatives
such as 4PL which already account for more than 54% of
the distribution logistics. 3PL involves outsourced logistics
services using shared resources (warehouses, trucks, drivers,
loading/unloading equipment etc.) and can achieve significant
savings. Yet another development of note is the emergence
of autonomous vehicles that can transform the logistics by
removing the most difficult of the logistics restrictions: need
to find drivers, ensure that they do not drive for more than the
safe period, and get them home most nights.

In this paper, we take this a step further and consider
autonomous electric vehicles (AEVs) for logistics to further
reduce the carbon footprint of product distribution. We specif-
ically focus on perishable commodities in a large urban region,
where the distribution must be driven by the perishability
processes so that the product waste can be minimized. Unlike
long distance perishable product logistics where proper refrig-
eration facilities are essential, the regional logistics considered
here can reduce the distribution costs substantially and (lower
carbon footprint) if the distribution can be sufficiently agile
such that refrigeration facilities can be either eliminated or
reduced substantially. Another challenge in local logistics for
fresh food is that the quantities produced are not large enough
to fill large trucks, and we must consider smaller vehicles
and sharing of space between multiple products with differing
perishability processes. As the trends of grow local, buy local,
and urban agriculture take hold, we expect the variety of
products to increase and quantities of any given products to
be transported to go down.

TABLE I. COMPARISON OF CO2 EMISSIONS; BUS TRANSIT VS
PASSENGER CARS [2]

Num of
commuters

Passenger
miles/gallon

Pounds
CO2/100
passenger miles

Passenger car (25 mpg) 1 25.0 89

Heavy-duty transit
bus (2.33 mpg)

1 2.3 953
5 11.7 191
11 25.6 87
40 93.2 24
70 163.1 14

The city bus services suffer similar level of inefficiency
factors; in many regions buses with capacities of 50-100 have
occupancy of just 2-3 [3]. Because of such empty miles mass
transit vehicles use up roughly the same energy and emissions
(shown in Table. I) whether they are full or empty, and for
much of the time, they’re more empty than full [4]. As a
result, while systems in major cities like New York’s have
a low per-passenger carbon rate, those in Cleveland, Pitts-
burgh, and Memphis have a comparatively high one [2]. The
efficiency factor can be improved easily by abandoning low-
density routes and running the remaining lines at peak hours.
However many metro areas choose to design systems that
favor coverage over capacity, knowing full well that will mean
running some empty buses, because suburban or low-income
residents need them [2]. This results in a competing goals
of transportation efficiency and coverage, which cannot be
fulfilled simultaneously by implementing regular bus services
with standard bus routes. A win-win situation is only possible
if the bus services can be on demand where a passenger first
requests or reserves a ride and requirements from his mobile
phone, and then in about 15-20 minutes, an AEV pulls upThis research was supported by the NSF grant CNS-1542839.
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in front of his nearest pickup location point. These AEVs
will pick up and drop off multiple passengers on their way,
which makes them different than typical taxi services. The
key challenge is to schedule and update the AEVs and their
routes depending on the passenger’s demands while ensuring
the dual contradictory objectives of efficiency and coverage.

Even without the driver, the proper spatial distribution of
delivery vehicles and containers remains an important aspect of
logistics and transportation; therefore, we envision each AEV
visiting a number of pickup/delivery points and then return to
their starting points before running out of energy for further
recharging. To improve the transportation efficiency further, we
merge people transportation along with the food distribution
logistics. A shared use of AEVs for carrying both products
and passengers can maintain desired transport efficiency in the
face of both longer term changes and short term fluctuations in
product availability and demand in smart urban areas. Carriers
delivering food packages can give ride to the passengers if
their destination points are on the way of the carriers. Some
of the recent initiatives have been taken by Sidecar in San
Francisco [5], [6] shows that this combined procedure can
cut the shipping cost by 1/5 while reducing the delivery
time by half as the carriers are better utilized and busier for
longer periods of time. This is thus a win-win situation where
the carriers earn 75% more while the people and packages
experience lower waiting time and prices due to more and
quick availability of the carriers.

This promising combination of people transportation and
food delivery needs to fulfill the delivery guarantees of both the
packages and the passengers, which is the main objective of
this paper. We propose a collaborative urban transportation ar-
chitecture called SmartPorter where the AEVs collaboratively
meet the demands to maximize the transportation efficiency
while meeting the delivery demands. We develop the inte-
grated framework of SmartPorter architecture and evaluate the
tradeoffs in between different design objectives. Through sim-
ulations we show that SmartPorter improves the transportation
efficiency by ∼24-78%, whereas improves the delivery quality
by ∼2 times compared to the typical fixed route bus services
or food delivery services by utilizing the AEV space efficiently
while satisfying the distribution demands.

The outline of this paper is as follows. Section II discusses
the motivation and objectives of the proposed combined archi-
tecture. Section III then introduces the SmartPorter architecture
along with the AEV route planing and adaptation. In section IV
we develop an analytical framework to model different design
tradeoffs. Section V summarizes the related works and litera-
tures. Finally, section VI concludes the discussion.

II. MOTIVATION, OBJECTIVES AND PRELIMINARIES

Current supply chain logistics face a great deal of ineffi-
ciency as most of the carriers go often half empty at departure.
Some recent studies show that in USA trailers are often 60%
full, whereas the global transportation efficiency is even lower
than 10% [1]. The primary reason for this inefficiency is
the lack of sharing and coordination among the distribution
facilities, as most retailers use their private logistics for con-
veying their packages within their own network that results
in significant empty miles. Shared logistics have the potential

to improve the logistics efficiency by reducing empty miles.
On the sharing front, large operators (e.g., Walmart, Boeing,
etc.) continue to have their private logistics networks, but
smaller ones are rapidly moving towards outsourced services,
provided by third parties. The so called third party logistics
(3PL) (and its derivatives such as 4PL) allow the supply chain
facilities to be shared among multiple customers. Recent data
suggests that 54% of transportation and 39% of warehouse
operations are outsourced [7]. Effective sharing is key to
reducing cost, energy consumption, and environmental impact,
but is significantly difficult due to several factors. In particular,
logistics must worry about such things as transport carriers
(e.g., trucks), product containers etc. It is clear that there is
a huge scope for enhancing logistics efficiency and hence its
environmental impact.

On the other hand in people transportation, city buses
suffers similar inefficiency factors as most of them run almost
empty especially at off-hours. According to a recent article [4]
“For the bulk of the day, and on quieter routes, the average city
bus usually undoes whatever efficiencies are gained during the
few hours a day, on the few routes, where transit is at its peak”.
On the other hand passengers are generally reluctant to rent a
taxi due to high fare rates and low cab availability especially
at the time of rush hours. At the same time buses generally
go in specific routes which significantly limit their usefulness
in passenger transportation. According to some recent studies
[8], [9] the average taxi fare of New York is 5.8 times higher
than the average public transport, whereas in countries like
China it is ∼11 times. On the other hand in rush hours the
cabs are 80% occupied which results in long waiting time
of the passengers. Several recent studies [10] have shown
that the passenger frequency goes up significantly during the
weekends (from Friday to Sunday) and also in rush hours,
thus the bus frequency needs to be enhanced at the rush hours
for better passenger service. On the other hand at the off-
hours running regular bus services will result in significant
decrease in efficiency. Thus there is a significant potential
of developing an adaptive and flexible bus service depending
on the passenger’s needs rather than a fixed and regular bus
service, to significantly improve the efficiency while reducing
the environmental footprint.

Other than efficiency, another important characteristics of
food logistics is spoilage or perishability. Food products often
deteriorate in quality or in value/usefulness as a function of
flow time through the logistics system. The deterioration as
a function of time t can be described by a non-decreasing
function that we henceforth denote as ζ(t). In general, ζ(t)
is linear for fruits or vegetables and exponential for fish/meat.
The decay itself is a complex phenomenon and could refer to
many aspects, including those that can be directly detected
by the customers (e.g., color, texture, firmness, taste, etc.)
and those that are latent but perhaps even more important,
such as degradation of vitamin content or growth of bacteria.
Furthermore, the decay rate is strongly influenced by the envi-
ronmental parameters such as temperature, humidity, vibration
etc. In passenger transportation there is no direct notion of
perishability, however passengers satisfaction level decreases
as their waiting time increases. Infact passengers generally like
to reach at their destination within some specified time, in such
cases we can model the corresponding perishability function
as a step-function.



In this paper we extend the concepts of space sharing in
distribution networks. The conceptual framework is applicable
to supply chain logistics for food transportation, flexible bus
services for passenger transportation, or can be a combined
transportation of both by vehicles like brucks. Conceptually
it is the scheduling of AEVs to determine the most efficient
way to pickup and deliver the passengers or packages using
smart sharing, while meeting their delivery requirements. In
general we define the passengers or packages as different types
of objects that needs to be transported depending on their
requirements. The pickup and dropoff locations are defined
as distribution points (DPs). We assume that the AEVs are
convertible with folding seats and can divide the space among
the passengers and packages dynamically by expanding and
shrinking the two boundaries. Such reconfigurable car space
utilization is available in few vehicles [11] but mainly for
improving the user comfort labels. However with some engi-
neering modifications, the space can be shared in between the
passengers and packages too. Infact a number of customers
who shop at the retail stores (Walmart, Target etc.) and use
public transport can be highly benefited if such service is
available. We also assume that the AEVs are equipped with
GPS that periodically update their location in a centralized
location.
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Fig. 1. A schematic of our proposed overall SmartPorter architecture.

III. SMARTPORTER ARCHITECTURE

We next present the overview of the SmartPorter architec-
ture using Fig. 1. Assume that D is the set of depots where the
AEVs wait for the instructions from the control center. Upon
getting the route instructions from the control center, the AEVs
start their journey and return to their corresponding depot after
loading-unloading subsequent objects. Thus the trip time of the
AEVs are limited by their battery capacity within which they
need to return to their depots. We believe that this assumption
is equally valid for manually driven vehicles as the drivers
need to return home after their driving hours, which limits the
trip length of their vehicles. However in case of drivers the
resting time is longer and inflexible whereas in case of AEVs,
the old batteries can be replaced with the charged ones in just
few minutes. The purpose of returning the AEVs to the depots
is to maintain proper spatial distribution of the AEVs across
the depots. The SmartPorter clients first request the controlling
center regarding their delivery requirements and details, i.e. the
source and destination locations, types and amount of objects
to be carried along with their delivery deadlines or freshness
qualities etc. A centralized controller then calculates the AEV’s
routes along with their loading-unloading schedules to meet the
client requests. When new requests arrive, the controller first
tries to modify/perturb the routes of the already active AEVs
rather than dispatching a new AEV from the depot, as far as
the new route does not disturb the delivery requirements of the

already loaded or reserved objects. On the other hand if the
new requests cannot be served by the existing active AEVs,
new AEVs are inserted into the system. Below we describe
the entire procedure in two subsections: initial trip planing of
the AEVs and the perturbation of the already active AEVs.
A. Initial trip planing of the AEVs

With these we next formulate our AEV scheduling problem
with the vision of sharing the AEV space to deliver objects
among multiple distribution points. Each AEV maintains it’s
maximum continuous driving time and within that time it tries
to serve as many orders as he can to maximize the transporta-
tion efficiency. This AEV routing strategy is similar to the
traveling salesman problem (TSP) [12], pickup and delivery
problem [13] and ride-sharing problem [14], but has a number
of differences. First, most of the schemes proposed for the
above-mentioned problems try to minimize the overall travel
time of the vehicles, whereas our objective is to maximize
the fuel-efficiency, reduce the empty-miles and at the same
time meet the package deadlines and requirements. Second the
above-mentioned problems do not have any maximum delay
bound, whereas our scheme has to consider the maximum
driving time of an AEV, which puts an upper limit of their
travel times. Third in the above related problems, a vehicle
needs to go to every location at least once and serves their
requirements, whereas in our scheme an AEV may skip
fulfilling the demands of some clients within its coverage area,
if the maximum time-limit cannot be maintained or if visiting
certain clients effectively reduce the performance objectives.
Those skipped objects will be delivered by other AEVs. We
next model the optimization problem and then discuss the
complexity of AEV route planning as follows.

TABLE II. TABLE OF NOTATIONS

Indices
i, j , Index for distribution centers (1, ..., N) that are

within the coverage areas of the AEVs
` , Index for transit-segments of the AEVs (1, ..., T)
t , Index for types of objects (1, ..., T )

Transportation variables
pt`ij , Amount of type t loaded at DPi for delivery at

DPj at the `-th transit-segment
dt`ij , Amount of type t unloaded at DPi from DPj at

the `-th transit-segment
Rt`

ij , Amount of type t that are on the AEV for delivery
at DPi from DPj at the `-th transit-segment

Lt` , AEV load of type t at transit-segment `
St
ij , Delivery request from DPi to DPj of type t
Tij , Time of travel from DPi to DPj

B`
j , Time when the AEV delivers at DPj in the `-th

transit-segment

Decision Variables
x`ij ∈ 0, 1 , Whether or not the AEV goes from DPi to DPj

at the `-th transit-segment

The objective of an AEV scheduling is to maximize the
efficiency of the transportation, which we define as the amount
of product delivery per miles/time. Thus our objective function
is to

Maximize

∑
i

∑
j

∑
t

∑
` d

t`
ij∑

i

∑
j

∑
` x

`
ij .Tij

(1)

The necessary variables are listed in Table II, where the
term transit-segment is defined as follows. The objective



function is defined as efficiency factor. If a AEV goes from
DP1→DP2→DP3→DP1, then the first transit-trip segment
starts at DP1 and ends at DP2, the seconds segment starts
at DP2 and ends at DP3 and so on. The maximum number
of transit-segments allowed for a AEV is assumed to be T.
The source of an AEV is denoted as s. The constraints are
defined as follows.

Continuity constraint: If the AEV comes at point j at
transit-segment `, then it needs to leave from j at transit-
segment `+1, i.e.∑

i

x`ij =
∑
k

x`+1
jk ∀j,∀` ∈ {1, 2, ...,T− 1} (2)

Also an AEV loads and unloads objects at DPi only when it
is at the DPi, i.e.∑

j

∑
t

d
t(`+1)
ij ≤M

∑
k

x`ki (3)∑
j

∑
t

p
t(`+1)
ij ≤M

∑
k

x`ki ∀i,∀` ∈ {1, 2, ...,T− 1} (4)

where M is at least as high as the maximum amount of objects
that can be picked-up/delivered at any particular DP. The
amount of objects that is loaded is less than the corresponding
delivery requests as summarized in equation(5). Also the
cumulative amount of loading and unloading is equal which
is shown in equation(6). Equations(7)-(9) show that the AEVs
need to deliver all the objects that they have loaded before
ending their journey.∑

`

pt`ij ≤ St
ij ∀i,∀j,∀t (5)∑

`

dt`ij =
∑
`

pt`ji ∀i,∀j,∀t (6)

Rt`
ji = R

t(`−1)
ji + pt`ji − dt`ij ∀i,∀j,∀`,∀t (7)

dt`ij = R
t(`−1)
ji ×

∑
k

x`−1ki ∀i,∀j,∀` ∈ {1, 2, ...,T− 1},∀t

(8)
RtT

ji = 0 ∀i,∀j,∀`,∀t (9)

AEV-load constraint: Constraint(11) shows that the AEV-load
at any transit-segment ` is equal to the AEV-load at its previous
transit-segment and the difference of the amount that is loaded
and unloaded at `. Also the AEV-load at any ` is less than the
AEV capacity C, which is shown in equation(12).

Lt1 =
∑
i

pt1si (10)

Lt` = Lt(`−1) +
∑
i

∑
j

(
pt`ij − dt`ij

)
∀` ∈ {2, ...,T},∀t

(11)∑
t

Lt`.Vt ≤ C ∀` ∈ {2, ...,T} (12)

where Vt is the volume of the container (object) type t. In case
of food logistics, constraint(12) simply assumes that multiple
containers of different sizes always fit within a AEV as far as
their cumulative volume is less than the AEV’s capacity. This
is an over-estimation of the packing ability of the containers.
However in reality this over-estimated amount of objects can

TABLE III. ORDER MATRIX

A B C D E
A - X X X X
B - - X - -
C X - - - X
D X - - - X
E X - X X -

TABLE IV. TIME MATRIX

A B C D E
A - 2 3 3 3
B 2 - 2 3 3
C 3 2 - 1 1.5
D 3 3 1 - 1
E 3 3 1.5 1 -

be passed to a loading module that loads a fraction of the
assigned objects by solving typical 3D-bin packing [15]. The
remaining objects can be carried by other AEVs while they are
scheduled. Notice that due to the use of modular containers
or π-containers [1], the error due to this over-estimation is
limited.

Travel time constraint: The total travel time is bounded by
the minimum and maximum driving time allowed, i.e.

Tmin ≤
∑
i

∑
j

∑
t

x`ij .Tij ≤ Tmax (13)

Also the delivery time at the DPs are recorded as follows:

B1
s = 0 (14)

B`
j =

∑
i

x`−1ij ×
(
B`−1

i + Tij + wj

)
∀j,∀` ∈ {2, ...,T− 1}

(15)

where wj is assumed be the time for pickup/delivery at the
delivery point j.

Delivery constraint: The delivered objects should ensure
its required freshness limit =, i.e.(

Qt
ij − kt.B`

j

)
dt`ji ≥ =.dt`ji ∀i,∀j,∀`,∀t (16)

This constraint assume linear decay, whereas exponential de-
cay can be modeled in a similar fashion. Such delivery con-
straint effectively models a delivery deadlines corresponding
to different types of objects.

Other constraints: Also the AEV should start and end at
the starting point. To keep the problem simple, we assume
that the AEV does not visit a point more than η times. For
our simulations, we keep η to be 1 for simplicity. These give
rise to the following constraints∑

i

∑
`

x`si +
∑
j

∑
`

x`js = 2∑
i

∑
`

x`ij ≤ η ∀j other than the source∑
i

∑
j

x`ij ≤ 1 ∀t
∑
i

x1si = 1

∑
j

∑
`

x`js = 1
∑
j

T∑
`=2

x`sj = 0

(17)

Genetic Algorithm Based Metaheuristics: The above men-
tioned optimization problem can be proven to be NP-hard
[16], we thus propose a genetic algorithm based metaheuristic
to solve this problem. Genetic algorithms are probabilistic
techniques that mimic the natural evolutionary process. A ge-
netic algorithm maintains a population of candidate solutions.
Each candidate solution in the population is encoded into a
structure called the chromosome. Each chromosome is assigned
a fitness value, which represents the quality of the candidate
solution. A selection process simulates the survival of the fittest



paradigm from nature. Better-fitted chromosomes have higher
chances of surviving to the next generation. The number of
chromosome per generation is constant. As in natural life,
offspring chromosomes are obtained from parent chromosomes
mainly by using two operators, crossover and mutation. Some
other chromosomes simply survive unaltered, while others die
off.

We first assume that there are n distribution points. An
AEV needs to visit at all the points to pickup and drop off
necessary objects and then come back to its starting point. Let
us define a chromosome as a vector (c1, c2, ..., cn), where ci
represents the i-th distribution point. We assume that there are
M chromosomes in a mating pool. The fitness value of each
chromosome is the overall transportation efficiency given by
the objective function of the optimization problem. To calculate
the fitness value we need to determine the amount of objects
that are loaded and unloaded at different points. For a given
chromosome vector we decide the loading-unloading amount
as follows: at point i, assume that there are atij amount of
objects for destination j of type t. It then calculates the trans-
portation efficiency of carrying that objects as eij =

∑
t a

t
ij

di→j

∀ j = i + 1, ..., n where di→j is the distance from i to j
through the router vector (c1, c2, ..., cn). It then sorts the eij
in decreasing order and load the objects in that order until (a)
the AEVs are fully loaded, or (b) all objects from i are loaded.
For different types of objects, the higher priority objects are
loaded ahead of the low priority objects.

Initially the mating pool is generated randomly. We adopt
the well known elitism selection mechanism where Me < M
best chromosomes are placed directly in the next generation.
The rest of the M − Me chromosomes are generated by
mutating the elite chromosomes. Chromosomes that do not
satisfy constraints (13) and (16) are discarded from the pool.
The algorithm stops when the best solution does not improve
significantly for a fixed number of consecutive iterations or
a large predefined number of iterations is reached. When the
stopping criterion is reached, the algorithm chooses the chro-
mosome/solution with the highest fitness value. This process is
repeated for all n = 2, ..., N and from the depots as the starting
points. The best possible solution is then used to schedule the
AEV to load-unload the corresponding objects. In this way
the AEVs are dispatched one by one until all the demands are
satisfied.

We first compare the effectiveness of the proposed ge-
netic algorithm compared to the optimal solution in Fig. 2.
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Fig. 2. Validation of the proposed genetic
algorithm (GA) compared to the optimal so-
lution. Within first braces the first and second
indexes are Tmin and Tmax respectively.

We use AMPL solver
[17] for solving
the optimization
problem. The travel
time in between
the DPs are shown
in Table IV. The
demand matrix of the
objects among the
DPs are shown in
Table III. In Table III
X is a variable,
which is varied from
10 to 200 for our
simulations. We

assume all the objects are of same size of unit volume. The
AEV has a volume of 100, i.e. its capacity limit of 100
objects. Also the Tmin is assumed to be 6 units, whereas
Tmax is varied in between 6 to 10 units. We ignore the
pickup/delivery time for simplicity. The mating pool size M
is assumed to be 100. From Fig. 2 we can observe that the
proposed genetic algorithm closely matches with the outcome
of the developed optimization problem. We thus use the
genetic algorithm to generate the results for our simulations.
B. Perturb the routes of existing active AEVs

In real scenarios the delivery orders from the source-
destination points come continuously and thus the AEVs need
to change their routes and delivery schedules to pickup some
new customers if the delivery requirements of the already
reserved objects are not violated. We notice that the AEVs
need to check four conditions before deciding to perturb their
routes or delivery schedules of the AEVs.

Delivery order: In an AEV’s travel route the source point
needs to be visited ahead of the corresponding destination
points. If we assume the points of an AEV’s trip as a set
of states, then a AEV’s route φ |= si → Fdi, for the source-
destination pairs (si, di) where |= denotes satisfaction relation,
→ denotes implication, and F is the forward operator.

Delivery time: The delivery time of the already reserved
objects and the new objects need to be met. Thus for the
destination points di, the AEV trip φ |=ti Fdi, where ti is
the delivery deadline for the objects destined to di.

Capacity constraint: The AEVs should not run out of
space for detouring and loading some new objects that will
disturb their already confirmed objects.

Travel time: The travel time of an AEV cannot exceed its
maximum amount, otherwise it will run out of charge. Thus if
a is the starting point of an AEV, then φ |=Tmax

Fa.

We call these conditions OTCT (order, time, capacity,
travel time) conditions, which need to be satisfied whenever
the AEVs change their travel plan. To satisfy these online
requests we run the genetic algorithm along with the additional
OTCT constraints to check whether the existing running AEVs
can fulfill the requests of the online requests. If the requests
cannot be satisfied by the running AEVs, the new AEVs are
inserted into the system whose route is planned according to
section III-A.
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Fig. 3. Variation of efficiency factor with (a) different demand rates, and (b)
level of uncertainty of supplies.

C. Performance evaluation:
We simulate the performance of our proposed SmartPorter

system in Matlab R2015b [18]. We distribute 50 nodes uni-
formly in an area of 100×100 sq. unit. We assume four
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routes.

depots that are the starting and finishing points of the AEVs.
The source-destination pairs are generated uniformly randomly
with a probability of 10%. Each source-destination pair has to
ship some objects that are uniformly generated from (0, r).
We assume two types of objects, one has higher priority than
the other one. Tmin and Tmax are assume to be of 50 units
and 500 units respectively. We assume that the deadline of the
both objects to be 500 units, which is identical to the value of
the chosen Tmax.

Comparison with different AEV size: Fig. 3(a) shows the
achieved transportation efficiency with the variation in AEV
size. From Fig. 3(a) we can observe that the SmartPorter
system improves the transportation efficiency by ∼2 times
with the increase in r from 100 to 500. This is because with
more package arrival, the AEV space is better utilized which
improves the transportation efficiency and reduces the empty
miles. The efficiency also increases by ∼2 times while the
AEV size increases from 100 to 500 as the AEVs can transport
more objects in their journey.

The efficiency factor is also affected if the arrival of objects
are not certain or delayed, which is depicted in Fig. 3(b). In
Fig. 3(b) the “uncertainty level” is defined as the probability
with which the arrival of products are reduced by some fraction
(assumed to be 80%) of the promised amount. From this figure
we can observe that the efficiency decays with the increase
in the level of uncertainty which is obvious due to lesser
availability.

Effects of item waiting time on delivery quality: We now
show the effect of object waiting time on delivery quality. We
assume that the objects wait at the distribution points before
an AEV arrives, picks them up and delivers them in their
successive destinations. This entire delay results in quality
loss or spoilage which we model as linear and exponential
function with spoilage rate k of 0.005 and 0.05 per unit time
respectively. A fresh item is assumed to have a quality of 100.
Fig. 4 shows the variation of delivery quality with different
item waiting time and spoilage rates. From this figure we
can observe that the delivery quality drops drastically with
exponential decay model, with k = 0.005 and 0.05 the delivery
quality drops down by ∼40% and <5% respectively when the
waiting time becomes 100 units. Intuitively this motivates the
necessity of just-in-time supply of objects with respect to the
AEV arrival time at the distribution points, rather then keeping
the objects waiting for longer periods.

Comparison with fixed AEV trips: We next compare the ef-
fectiveness of SmartPorter in comparison to fixed AEV routes
that are generally applicable to typical bus services in Fig. 5.
We first generate four fixed travel routes from four depots for

the AEVs using [19]. We next model different request arrival
rates in between the source-destination distribution points of
the travel routes. In Fig. 5 the x-axis is the percentage of the
total source-destination distribution points from where requests
arrive. From Fig. 5 we can observe that compared to the fixed
trip scheme, SmartPorter improves the efficiency factor by
∼24-78% by dynamically choosing the AEV trips. From the
food distribution angle, SmartPorter also improves the delivery
quality by ∼2 times by flexibly routing the AEVs in between
the source-destination distribution points, where the spoilage
process is assumed to be linear with spoilage rate of 0.05 per
time unit.
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Fig. 6. Variation of the percentage of objects transported by the active AEVs
with (a) different AEV sizes, and (b) their number.

Effects of AEV trip perturbation: To observe the perfor-
mance of the perturbation phase, we first generate the routes of
the AEVs, as well as their delivery schedules and requirements
among different distribution points. We next randomly generate
new delivery requests among different source-destination pairs
with a probability of 10%, whereas the amount of objects that
are to be transported is chosen uniformly randomly from (0,
r). For Fig. 6 we assume r = 500. We next implement our
AEV route adaptation scheme while maintaining the OTCT
conditions as mentioned in section III-B, and calculate the
percentage of new objects that can be transported by the
existing active AEVs.

Fig. 6 shows the percentage of new objects that are serviced
with different AEV sizes and numbers. From Fig. 6 we can
observe that the amount of new item serviced increases by
∼20% as the AEV size increases from 100 to 500. The objects
serviced also increase by ∼60% while the number of AEVs
increase from 10 to 50. We thus observe that by adapting the
active AEV routes, SmartPorter can serve a certain portion
(>20%) of the new requests rather than instructing some new
AEVs to serve the requests. Notice that all the new requests
may not be served by the existing active AEVs, and thus
new AEVs need to added into the system to serve the rest
as mentioned in section III-A.

Fig. 7. Number of active AEVs with varying traffic demands.



Comparison with time varying demands: To explore the
performance of SmartPorter with time varying orders, we use
the data [20] obtained from the mobile apps in Uber cars
that were actively transporting passengers in San Francisco.
The dataset consists of GPS traces of 25000 pickups/trips by
multiple Uber cars for one week; corresponding to each trip
the app collects the GPS traces in every 4 seconds. The data
have been anonymized by removing names, actual trip start and
end points. The actual dates were also substituted, however the
weekdays and time of day are still intact [10]. Even though
the dataset doesn’t contain the actual starting and ending points
of individual trips, we may still get a sense of how long the
cabs are actively transporting passengers from the “frequency
of these GPS points” at different days and hours.

Fig. 7 shows the frequency of GPS traces obtained from the
moving cabs of Mondays and Sundays at different hours of the
day. We choose these two days as they are representative of the
variation in traffic pattern of an office day and a weekend. We
can observe that the frequency goes up during the weekend (i.e.
Sunday) compared to weekdays and peaks in early hours of the
day, which shows that San Francisco has a very active night
life. To simulate this traffic pattern in SmartPorter we assume
r to be proportional to this varying traffic pattern and simulate
this for 24 time units. In Fig. 7 we deploy 10 distribution
points uniformly in an area of 100×100 sq. unit. The results are
shown in Fig. 7 which shows that the number of AEVs required
to fulfill the requests varies in proportional to the frequency
of GPS points sent by the cabs at different time units. This
shows the adaptive nature of SmartPorter depending on the
demand rate, rather than scheduling buses at regular intervals
(like 15-20 minutes).

IV. ANALYTICAL MODEL FOR AEV FREQUENCY,
EFFICIENCY AND QUALITY TRADEOFF

We next model a simplified analytical model to demonstrate
the tradeoff between the transportation efficiency and delivery
quality or freshness. Assume that in a DP the objects are
coming at a rate of λ packets in unit time, whereas the carrier
companies (or shipping companies) are sending their AEVs at
f per unit time. Notice that as the AEV frequency becomes
higher, the waiting time of the objects at the distribution point
decreases, which improves their delivery freshness. Whereas
higher AEV frequency results in more empty miles especially
when λ is lower.

We next define the delivery quality Q as a function of f .
Q may be exponential or linear depending on the perishability
characteristics of the objects. For passenger transportation, Q
may be thought of a passenger satisfaction function which
will decay as the waiting time increases. We assume that the
delivery point’s utility is proportional to the delivery quality
(or satisfaction) of the objects which we denote as c.Q(f),
where c is a constant. Also we assume that the delivery point
pays ρ units per object (package or passenger) to the carrier
company. Thus the profit of the distribution point is UDP =
λ (c.Q (f)− ρ).

On the other hand the shipping company’s utility or profit
is USC = λ.ρ−f.s.τ , where s and τ are the size of the AEVs
in terms of number of objects that it can load and cost per unit
capacity respectively. Thus the shipping companies will try to
improve their space efficiency by matching f with the object
arrival rate λ, whereas the distribution companies will try to

maximize their delivery freshness to improve their profit. Thus
the social utility is given by

U = UDP + USC = λ.c.Q (f)− f.s.τ (18)

If the spoilage function is assumed to be linear decay with
a rate of k, then the optimal AEV frequency, percentage of
empty miles (E) and delivery quality can be written as

fopt =

√
ckλ

sτ
E =

s.fopt − λ
s.fopt

Qdelivery = Q0 −
k

fopt
(19)

where Q0 is assumed to be the initial quality of the objects at
the distribution points.

Performance Analysis: Fig. 8(a) shows UDP ,USC ,U with
different AEV frequency f . For Fig. 8 we assume that
c, s, τ, λ, p to be 1, 100, 10, 10 and 50 respectively. The
initial quality Q0 and decay rate k is assumed to be 100
and 0.5 respectively. With these set of values fopt is coming
to be ∼0.07 which is also validated from Fig. 8(a). From
Fig. 8(a) we can also observe that UDP starts increasing with
the increase in AEV frequency because of faster service of
the objects by the AEVs. On the other hand the shipping
company’s profit starts decreasing linearly with increasing f .

Fig. 8(b) shows the optimal AEV frequency fopt with the
variation of package arrival rate λ. From Fig. 8(b) we can
observe that fopt increases by ∼3 times when the package
arrival rate goes from 0.1 to 1. This is because of the fact that
increase in package arrival rate also results in an increase in
AEV frequency so avoid long waiting time of the objects at the
distribution center. We can also observe that AEV frequency
also increases by ∼1.7 times when the decay rate k varies from
0.25 to 0.75. This is obvious from the fact that more decay
rate results in quick spoilage, thus AEV frequency needs to be
higher to void unexpected spoilage.

Fig. 8(c) shows the percentage of empty miles E with
different package arrival rate λ. From this figure we can
observe that E decreases by ∼44% when λ is increased from
0.1 to 1. With frequent arrival of objects, the AEVs deliver
more objects while reducing their empty miles. Notice that
the empty miles increase by ∼8-27% with the increase in
spoilage rate from 0.25 to 0.75. This is because of the fact that
increase in spoilage results in the increase in AEV frequency
for delivering fresher objects (as seen in Fig. 8(b)), which
results in more empty miles.

Fig. 8(d) shows the delivery quality Qdelivery of the objects
with the increase in λ. Increasing λ from 0.1 to 1 results
in quality improvement by ∼1.7-5 times. This is because of
the fact that the increase in λ results in an increase in AEV
frequency (as seen in Fig. 8(b)), which results in quicker
delivery and thus improved delivery quality. The intuition
behind this is that with higher λ the social utility maximization
scheme requires faster AEV service to reduce the loss due
to spoilage (refer to equation(18)). We can also observe that
with the increase in decay rate from 0.25 to 0.75, the delivery
quality of the objects decrease by ∼14-74% due to quicker
spoilage.

V. RELATED WORKS

Recent advances in food distribution: Some very recent
related works are reported in [1], [21], [22] on physical
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Fig. 8. Variation of (a) different utility functions with AEV frequency. Effect of different package arrival rate λ on (b) optimal AEV frequency fopt, (c)
percentage of empty miles E , and (d) the package delivery quality Qdelivery.

Internet, that proposes the idea of imitating the Internet ar-
chitecture in physical supply chain. In [23], [24], [16] the
authors have shown that considerable synergies exist between
information networks carrying time-sensitive information and
perishable commodity distribution networks, and have pro-
posed a five-layer network model to unify the two. However,
these papers talked about some important points regarding
reducing empty miles and drivers driving time, standardization
of the containers, transportation efficiency, package tracking
and traceability etc. while the food quality and freshness have
not been discussed.

Taxi recommender and Ridesharing service: Taxi dispatch-
ing services [25] send a nearby taxi close to the passengers
based on a passenger’s call. In [26], [27] the authors propose
a system to instruct the driver’s to park in certain places so that
they can find passengers quickly to maximize profit, based on
some historical learning based mechanisms. Such proposals
are beneficial for drivers to make quick profit, however the
collaborative and shared services are not addressed in these
works.

Shared taxicab policies works in limited cities where a cab
driver picks up multiple passengers in cheaper cost. Some
airport shuttles also provide door-to-door airport shuttle that
picks up and drops off multiple passengers [28]. In these cases,
route planning are mostly done by the drivers individually or
in a small scale ad-hoc manner. In [9] the authors propose a
single source multiple destinations ridesharing policy which
is mostly applicable in airports or downtown areas where
multiple passengers go in the same directions. On the contrary
our proposed scheme works in an intelligent and collaborative
fashion to improve the overall efficiency of transportation
while meeting several delivery requirements of various clients.

VI. CONCLUSIONS

In this paper, we introduced the SmartPorter architecture
with the notion of collaborative and adaptive AEV route
scheduling and space sharing while improving the transporta-
tion efficiency and maintain fresh delivery of packages espe-
cially important for perishable food packages. The proposed ar-
chitecture explored the idea of collaborative logistics and adap-
tive transportation rather than depending on private logistics
and regular, fixed transportation system. SmartPorter system is
applicable in several ridesharing environments which includes
the combined transportation of perishable food packages of
different distribution companies, or the transportation of pas-
sengers by exploring flexible bus services, or a combination
of two. We believe that the proposed SmartPorter architecture
will complement the upcoming smart city planning initiatives

with a vision of smarter and cooperative city logistics and
transportation.
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