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Abstract-Reducing the power dissipation and energy con
sumption of computing systems is an important challenge for 
system designers. From hand-held devices, drawing energy from 
batteries, to large scale datacenters, having as energy consump
tion several MWh, the development of energy reduction tech
niques is a key enabler to get a continuous performance increase 
of computing systems. The development of energy reduction 
techniques requires an overall view and deep understanding of 
the underlying software, middleware and hardware. At the same 
time, computing system designers have always a set of system 
requirements to fulfill. Manifestly, this always leads to trade-oft's 
between energy consumption and other system requirements. 

This paper provides insights on the current issues, approaches 
and challenges computing system designers are facing when 
developing energy aware platforms. The main focus is put on two 
important aspects of system design: a) how to energy efficiently 
map a software application on hardware components and b) how 
to energy efficiently manage system behavior changes at runtime. 

I. INTRODUCTION 

To provide a continuous performance increase of computing 
systems, the clock frequency wall was avoid in the beginning 
of the 2000s by the introduction of multi-core based systems 
[1]. This led to a new challenge in mid-2000s: the CPU 
power wall [1], [2]. Indeed, due to physical limitations of 
semiconductor materials, the power dissipation of a fixed chip 
area is limited. With the evolution of semiconductor device 
fabrication, from lOp,m manufacturing process in the 70s 
until the commercialization of 14nm based technology CPU 
in 2015, more transistors are laid down into smaller silicon 
area introducing an increase of the power density [3]. This 
eventually introduced drack silicon, when all the components 
of a chip can not be operated at the same time due to its 
power dissipation and generated heat. The effects of the power 
wall was until now limited by the design of more energy 
efficient transistors with for example lower voltage levels. 
This had the advantage to increase the transistor efficiency in 
proportion to the increase of transistor density, a phenomenon 
called the Dennard scaling [4]. However the current increase 
of the transistor efficiency is not anymore proportional to 
the increase of transistor density [2], and the semiconductor 
device fabrication is currently in a post-Dennard scaling area, 
where a substantial increase of the performance of computing 
systems can not be obtained before solving the current power 
dissipation and related energy consumption issues. 

In 2007 alone the energy consumed by data-centers in 
western Europe was already 56TWh. In 2010 the energy 
consumption of data center was estimated to represent between 
1.1 to 1.5 % of the worldwide electrical energy production 
[5]. In 2012 data centers had an electrical consumption of 
270 TWh, representing an compound annual growth rate of 
4.4% since 2007 [6]. A recent study [7] predicts the energy 
consumption of data centers in US will reach 73 TWh in 2020, 
representing more than 5 times the production capacity of one 
new EPR nuclear reactor. 

Thefore energy efficiency is, for already several years and 
for almost any type of computing systems, a key issue. 
Increasing the energy efficiency is one of the main objectives 
when trying to lower the energy bill of large data centers or 
aiming at increasing the lifetime of battery operating devices. 
Being able to decrease the energy needed to perform a required 
number of operations necessitates an overall view and deep 
understanding of the underlying software, middleware and 
hardware. Different approaches can be used on these compo
nents to increase the energy efficiency of the overall systems. 
However, as energy is never the unique requirement for a com
puting system, increasing the energy efficiency always leads 
to a trade-off between energy consumption and other systems 
requirements. Generally, system designers end-up with the 
challenging problem of solving the trade-off between energy 
consumption and performance. The non-linearity between en
ergy consumption and performance was first highlighted as a 
major problem in 2007 by Luiz Andre Barroso and Urs Holzle 
[8]. Achieving energy proportional computing is an important 
goal, especially for computing systems having variable loads 
and operating at different utilization rates [9]. 

In a CPU, the non-linearity between energy consumption 
and performance originates from the level of static power 
dissipation, the thermal effects and the exponential relationship 
between the supply voltage and power dissipation. For long 
time the power dissipated by a processing element was mainly 
due to the switching activities of the load capacitance in the 
circuit gates. However, due to technology scaling the static 
power dissipation is exponentially increasing and started to 
dominate the overall power dissipation in microprocessors 
in the 2000s decade [10] [11]. At the same time the tem
perature of a microprocessor directly influences the static 
power dissipation as an increase of temperature triggers an 
increase of leakage currents [12]. The exponential relationship 
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between the supply voltage and power dissipation is widely 
exploited by run-time systems adapting the voltage levels 
according to current resource requirements. However, dues 
to propagation delays, lowering the supply voltage implies a 
reduction of the clock frequency, which might translate into 
lower performance. 

II. POW ER AND ENERGY IN PROCESSING ELEMENT S 

The power dissipation in a CPU originates from two distinct 
sources: the dynamic power Pd and the static power Ps . The 
static power dissipation comes from leaking currents in tran
sistors, mainly the subthreshold [10] and the tunneling currents 
[11]. The magnitude of the static power dissipation depends 
on the manufacturing technology of the semiconductor, its 
operating temperature and the source voltage range. Beside 
the static power dissipation, the dynamic power dissipation 
comes from the switching activities of the logical gates when 
executing machine instructions. The dynamic power is due to 
the charge and discharge of the load capacitance Cl, which 
is roughly proportional to the chip area. The dynamic power 
dissipation can be expressed by Equation 1: 

Pd = a . Cl . f . V2 (1) 

where f is the clock frequency, V the supply voltage 
and a the activity factor ( i.e. the fraction of the circuit 
that is switching). As the dynamic power is quadratically 
dependent on the supply voltage, any technique lowering the 
supply voltage will have a substantial impact on the level 
of dynamic power dissipation. However, lowering the supply 
voltage implies a increase of the propagation delays between 
the gates, which require to also decrease the clock frequency. 
Although lowering the clock frequency has a positive impact 
on the dynamic power dissipation, it will scale down the 
performance of the CPU as the machine instruction execution 
time will be increased. Figure 1, presented in 2003 in [10], 
shows the evolution of the static and dynamic over the past 
years. Up to early 2000s, the static power dissipation could 
be ignored as the dynamic power dissipation was orders of 
magnitude larger. Although high-k dielectrics were introduced 
in 2007 with the 45nm technologies, it didn't have the radical 
effect as shown on Figure 1. The 2015 technology roadmap for 
semiconductor predicts that in the futur the static power dissi
pation will be particularly difficult to control while scaling up 
the performance. One of the proposed approaches to tackle the 
static power dissipation problem is the use of multiple types 
of transistors on the chip, some providing high performance 
with high leakage, some providing low performance but with 
low leakage currents. 

A. Thermal influence 
The static power dissipation of a chip is directly influenced 

by its temperature as an increase of temperature will trigger 
an increase of the leakage currents in transistors. Moreover, 
this might create a positive feedback loop as by increasing the 
leaking currents, the temperature will further increases, which 
in turn will increase the leakage current. The subthreshold 
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Fig. 1: Static and dynamic power dissipation and the trends 
[10] 
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Fig. 2: Influence of temperature on the power dissipation for 
an ARM processor [12] 

leakage current is exponentialy dependent of the thermal 
voltage Ve [10], which is in turn proportional to k: where 
k is Boltzmann's constant, q is the electron charge and T the 
temperature. 

The effect of temperature on the leakage currents and the 
static power dissipation was demonstrated in [12], [13]. Figure 
2 shows the power dissipation for an idling ARM CPU, a 
Quad-Core Exynos 4 implementation of the ARM Cortex
A9 architecture, at fixed clock frequency as a function of 
ambient temperature. The static power dissipation on the CPU 
and board levels increases exponentially with the temperature 
until 80 degrees Celsius. At this temperature, the CPU is 
automatically switched off as a safety functionality to avoid 
any physical damage of the semiconductors. 



B. Energy consumption 
The energy consumed by a processor is defined as the 

dissipated power integrated over a defined time window as 
in Equation 2: 

it2 
E = P(t)· dt 

fI 
(2) 

Therefore, reducing the energy consumption of a computing 
system is a two variable optimization problem. 

This results in a trade-off between performance, i.e number 
of executed operations over a period of time, and the corre
sponding average power dissipation over this period. 

III. MAPPING CHALLENGES 

The mapping problem is essentially an assignment and 
scheduling problem. It consists of assigning tasks (software 
components) on resources and decide on the execution order 
of the tasks. It exists at different level of resource abstractions, 
from hardware processing elements [14]-[ 17] to virtualized 
distributed computing infrastructures [18]-[21]. In all cases, 
the mapping is about optimizing conflicting metrics such 
as performance, cost, energy efficiency, power dissipation, 
flexibility, memory footprint, etc. 

As a consequence of the frequency wall, effort was put in 
the 2000s on application parallelization to take advantage of 
the introduction of multi core based processors [22]-[26]. Later 
from the mid-2000s the power wall and post-Dennard scaling 
area brought more heterogeneity in hardware processing el
ements and computing platform. One prominent example is 
the introduction of the BIG.little architecture by ARM for 
mobile-class processor. Such architecture offers multiple types 
of CPU, some providing high performance with high power 
dissipation, some providing low performance with low power 
dissipation [27], [28]. Changes in system architecture also 
occurred in data- center servers with the introduction of a 
mix of server-, mobile-and graphics-class processors [29]
[31]. The introduction of heterogeneity obviously increased 
the possibility to get better fits when mapping tasks into 
more diverse resources [32]. However, it also increases the 
mapping complexity as the relative characteristics of different 
type of processing elements need to be taken into account. As 
example, on a height cores symmetric multiprocessor (SMP) 
with ten different possible frequency levels, we can define 80 
(8 x 10) different configurations in terms of number of cores 
and frequency levels. In comparison, a BIG.littie processing 
has four high performance cores and four energy efficient 
cores. As each type of core has its own clock frequency 
domain, we can define 1680 (4 x 10+4 x 10 +4 x 10 x 4 x 10) 
possible configurations in terms of number and type of cores 
and frequency levels. 

A. Task Mapping and Workload Consolidation 
When mapping a set of task on SMP, the straightforward al

location strategy (also the one used in most operating systems) 
is to fairly allocate all tasks on all available processing ele
ments. This strategy enables a reduction of the dynamic power 
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Fig. 3: Opposite task mapping strategies [12] 

dissipation, has it allows a minimal clock frequency since the 
workload is processed in parallel. However it maximizes the 
static power dissipation as all processing elements are utilized. 
The complete opposite strategy would be to map as many tasks 
on as few cores as possible while not overloading them. With 
this approach unutilized cores can be shut down to reduce the 
static power dissipation. Figure 3 illustrates these two opposite 
strategies when mapping four tasks on a quad-core processor. 

Figure 4 illustrates the relative differences in terms of static 
and dynamic power dissipation for the fair allocation (Figure 
4a) and the consolidation (Figure 4b) strategies. As for the 
fair allocation strategy, every core dissipates a small amount 
of dynamic power since the clock can be set on a low level. 
At the same time, the cores also dissipate static power since 
all cores must be enabled to process the workload. The same 
set of tasks using the consolidation strategy is shown in Figure 
4b. Since all four tasks are mapped on only one core, the core 
must quadruple its frequency to provide the same performance 
as the fair allocation strategy (Figure 4a). As the frequency 
increases, the dynamic power increases due to the frequency 
factor f and the voltage factor V2 as was shown in Equation 1. 
Furthermore, when frequency and supply voltage increase the 
thermal dissipation also increases to form a thermal hotspot. 
This increases the overall static power dissipation. While the 
consolidation policy results in high power dissipation for the 
busy core, the idle cores can be shut off. 

The evaluation of the different strategies for a large range 
of system load levels was performed in [12] on a Odroid
X board equipped with a Quad-Core Exynos processor. This 
evaluation took into account the thermal influence on the static 
power dissipation by running experiments at different ambient 
temperature conditions. Figure 5 presents the efficiency, as 
the number of operations per second per watt, of the fair 
allocation and consolidation strategies for different load levels 
in three different ambient temperatures. From the Figure 
we can notice that at low load levels more work can be 
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accomplished for the same power budget by consolidating the 
workload onto a minimal number of cores. When using the 
consolidation strategy with low load levels, the reduction in 
static power dissipation is larger than the increase in dynamic 
power over the remaining cores, resulting in power savings. 
Furthermore, since the static power consumption is higher at 
higher temperatures the resulting gain is more apparent with 
higher ambient temperature. Moreover, it can be observed 
that when increasing the load level, the efficiency of the 
consolidation strategy is degrading in comparison with the fair 
allocation strategy. This results in crossover points between the 
efficiency of the two approaches. These crossover points depict 
the point at which the reduced static power and increased 
dynamic power compensate each other. Even though the gains 
of using load consolidation strategy on the chip level are 
considerably less than expected when compared to similar 
techniques used on the server level [33], [34], the results 
indicate that consolidation on the chip level can, only in 
some cases, prove to be a valid approach to improve energy 
efficiency. 

IV. RUNTIME SYSTEMS CHALLENGE 

Because software behaviors are typically dynamic at run
time, keeping a required level of performance and efficiency 
necessitates runtime solutions to dynamically manage resource 
allocations. Ideally resource allocation should strictly follow 
what applications requires and should avoid any over- and 
under-allocation situations. 

The most widely used actuator to alter at runtime the 
resource allocation, and therefore alter the efficiency and 
performance of applications, is the Dynamic voltage scaling 
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Fig. 5: Power dissipation as a function of the system load for 
different mapping strategies and ambient temperatures 

(DVFS) mechanism available on most hardware platforms. 
Using metrics collected at runtime a manager can adjust the 
required clock frequency, and as a consequence the supply 
voltage (see section II ), according to application needs. How
ever, most of runtime managers controlling CPU resources, 
like for example in Linux distributions, use only workload as 
the metric for resource allocation [35]. 

Workload is defined in most operating systems, as in Linux, 
as the ratio between CPU execution and CPU idle states for 
a given window of time. However it is a arguable metric 
for controlling CPU resources when energy efficient need 
to be taken into account. Indeed, the concept of workload 
does not integrate the notion of application performance. 
Therefore with such monitored metric, when applying high 
workload on a CPU, the runtime system will increase the 
clock frequency as long as the perceived workload remains 
high. Since applications will execute as long as work is 
available for execution, the workload will remain high for 
the entirety application execution. This leads to Race-to-Idle 
conditions [36], in which the CPU is executing the work as 
fast as possible before reaching the idling state. The popularity 
of this execution model relates to simple programming; the 
programmer specifies only the program functionality, and 
the operating system scales the clock frequency indirectly 
according to perceived workload. 

When this approach is applied on heterogeneous processor, 
this leads to unnecessary execution on the large, compu
tationally powerful, cores. Power optimization of DVFS in 
multi-core systems has been extensively studied in the past 
[37]-[39]. However, a critical difference between traditional 
multi-cores and heterogeneous multi-cores, like the ARM 
big. LITTLE, is the significant energy reduction potential of 
executing tasks on power efficient cores. 

90 



A. Execution model s 
Clock frequency in Linux based systems is driven by a ker

nel module called frequency governor. The frequency governor 
is monitoring the workload of the system and adjusts the clock 
frequency accordingly. A number of different governors can be 
used on a system, but in most Linux distributions the default 
governor is the Ondemand [40]. The Ondemand governor 
monitors and up-threshold value after which the workload is 
considered too important. As the threshold value is reached, 
the governor switches the clock frequency automatically to the 
highest value as illustrated in Figure 6. After the maximum 
value is reached, the governor decreases the clock frequency 
step-wise in order to find the most suitable frequency. 

- - - - - - - - - - - - - - - - - - - - - - - - Max freq 

___ ....J �E--- Workload 
increase 

Time 

Fig. 6: Behavior of the default on demand governor 

This strategy was designed to rapidly respond to changes in 
workload without performance penalty, and potentially still 
save energy by allowing a step-wise scaling down of the 
frequency and voltage. However, this strategy a) forces the 
CPU to always execute some part of the workload on the 
maximum clock frequency and b) for Race-to-Idle conditions, 
most of the workload will execute on the maximum (or a high) 
frequency since the workload will remain high as long as jobs 
are available for execution. 

However, on heteregenous multi-cores the notion of work
load is not a sufficient metric when energy efficiency is also 
required. To create a runtime managment system controlled by 
software requirements, we proposed a framework [41], [42] to 
inject application specific performance directly into a new type 
of runtime power manager (further explained in [43]). The 
power manager monitors the performance of the applications 
to determine the magnitude of the CPU resource allocation. 
The proposed power manager supports an execution strategy 
called QoS-Aware. The strategy is illustrated in Figure 7 (B), 
in which the execution time can be stretched out. By executing 
only at the required clock frequency, the power efficient cores 
on an heterogeneous platform can be utilized as long as the 
provided performance is sufficient. 

B. Power model 
The QoS power manager uses a power model to determine 

the increase in power when altering the clock frequency. The 

(A) Race-to-Idle 

(B) QoS-Aware 

Max freq Min freq 
,-___ A�____ __--�A�----__ ( Y , 

Idle 

Halffreq 
r-__________ �A� ______ � 

Time ) 

Fig. 7: Illustration of (A) Race-to-Idle strategy and (B) QoS
Aware strategy 

performance values provided by the executed applications are 
compared against a power model in order for the runtime 
manager to deduct the power output caused by the CPU 
resource allocation. 

As an application demands more resources, the aim of the 
runtime monitor is to chose a frequency which results in min
imum power increase and sufficient performance increase. For 
experiments, a model was constructed based on a big.LITTLE 
processor. Such model is constructed by mathematical expres
sions including architecture based parameters in order for the 
the runtime manager to account for the core type currently in 
use. Since a big.LITTLE system with cluster switching was 
used [44], only one type of core can be active at one time. 

Two separate power models for each core type were created 
based on the stress measurements [43]. Figure 8 (1) shows the 
LITTLE measurements from 250 MHz to 600 MHz and (2) 
the big measurements from 800 MHz to 1800 MHz. Because 
the aim is to keep the system executing on the efficient core 
as much as possible, the model for the LITTLE cores was 
overlapped with the lowest frequency of big cores in the LIT
TLE measurements. This generates a steep cost increase when 
transitioning from the LITTLE to the big model. Similarly, 
the highest clock frequency setting (600 MHz) of the LITTLE 
cores was included in the big-core measurement profile (seen 
in Figure 8 (2)), which drives the runtime manager to step 
down to this configuration if the provided performance is 
sufficient. 

These real-world measurements were then transformed [43] 
into two mathematical functions (as seen on Figure 8 (3)) 
using plane fitting methods [45]. With traditional non-linear 
optimization methods [46], we can then at runtime minimize 
the cost (power in our case) by selecting the optimal clock 
frequency, number and type of cores for a given application 
based on performance requirements. 

C. Eval uation 
To evaluate the proposed runtime power aware manager 

two applications were executed on an Exynos 5410 processor, 
containing four cortex A 15 and four cortex A 7 cores. A video 
decoder application, decoding a nop video stream, and a 
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Fig. 8: big.LITTLE power model. Separate reference measurements on the LITTLE and the big cores are used to generate a 
mathematical model which overlaps in the [600 800] MHz range. 

face detection algorithm, detecting faces on the decoded video 
frames, were used. The targeted QoS for the applications was 
30 frames per second for the video decoder, and 10 frame 
scans per second for the face detection algorithm. Also the 
face detection algorithm was set on a higher execution priority 
than the video decoder. 

Figure 9 presents the power dissipated by the processor 
when both applications are executed with (Figure 9 B) and 
without (Figure 9 A) the runtime manager. When using the 
default ondemand governer (Figure 9 A), the race-to-idle 
conditions result in the selection of relatively high clock 
frequency levels, which in turns results in executing the 
applications on the big cores. On the other hand, the runtime 
manager (Figure 9 B) is able to balance the use of both 
cores by constantly allocating the required resources based 
on the current application performances and resulting power 
dissipation. 

Table I provides the achieved energy consumption and QoS 
levels for both approaches. Compared to the default ondemand 
approach, the runtime power aware manager was able to save 
about 40% of energy at the cost of a 1 % QoS degradation 
for the video decoder, and 6% QoS degradation for the face 
detection algorithm. 

V. CONCLUSION 

Reducing the energy consumption of computing system 
while maintaining a required performance is a considerable 
challenge for system designers. Following the post-Dennard 

I I Energy I QoS Decoder 
I Ondemand I 334,3 I 100 (l drop) 
I Runtime manager I 201,5 I 99 (97 drop) 

QoS Face I 
92 (52 late) l 

86 (l08 late) I 
TABLE I: Energy (in Joule) and QoS (in %) 

scaling area and the emergence of dark silicon, heterogeneous 
processors appeared on the market as a potential solution 
against the power wall. While heterogeneous processors dra
matically increase the mapping complexity, they allow a more 
fine grained fit of software components on resources. 

We showed why workload alone is not a sufficient met
ric when trying to run-time manage in an energy efficient 
ways heterogeneous platforms. When integrating application 
performance metrics into the run-time control system, along 
with a power model of the different computing elements, more 
energy efficient resource allocation decisions can be taken. 
The proposed analytic approach can easily handle two types of 
cores and 19 frequency levels. However, if the number of core 
types found on processor significantly increase in the future, 
new approach will be required as the size of the resulting 
possible configuration states will explode. 
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