
Caching Salon: From Classical to Learning-Based
Approaches

Yangchao Zhao1, Xu Zhang1, Kai Yang1, Qilin Fan2, Dongchao Guo3 Yongqiang Lyu3,

Hao Yin3, and Zhan Ma1

1Nanjing University, 2Chongqing University, 3Tsinghua University

Abstract—As a key technology in content delivery, content
caching can not only reduce the load on the origin server to save
the traffic costs for content providers, but also can enhance users’
Quality-of-Experience (QoE) by placing popular objects in close
proximity. In reality, Content Delivery Network (CDN) providers
always try to design their caching strategies carefully to improve
the hit ratio of requests. With the development of learning-based
methods and their great successes in many fields, researchers
are also trying to explore learning-based caching approaches in
recent years. In this paper, we first review the classical caching
approaches, most of which are based on recency, frequency
and content size. Then we summarize the recent learning-based
methods in content caching field. Finally, we discuss the potential
content caching strategies in the future, and point out some open
issues. Through the studies in this article, we wish it can be used
as a reference for interested parties.

Index Terms—content caching, content delivery networks,
learning-based methodology

I. INTRODUCTION

With the development of 4G/5G technologies and the preva-

lence of smart phones in recent years, more and more people

consume online videos at anytime anywhere, which results in

the great increase of multimedia services. According to the

forecast from Cisco [1], video will take up 82 percent of all

IP traffic by 2022, up from 75 percent in 2017. Note that the

traffic are mainly distributed by Content Delivery Networks

(CDNs), which have cached contents in close proximity to end

users [2]. The content caching can not only reduce the load on

the origin server to save the traffic costs for content providers,

but also can enhance users’ Quality-of-Experience (QoE) by

fetching contents from nearby edge servers. However, tradi-

tional caching methods do not perform well because of the

various access patterns and the influence of users’ behaviors.

It is necessary to design either a more robust caching algorithm

or a specific cache strategy for different caching goals. With

the development of learning-based methods and their great

successes in many fields, researchers are trying to study

learning-based caching approaches in recent years.

In this paper, we have investigated the development of

caching approaches. We first elaborate on some basic questions

about content caching, including motivation and focus.

Why we need caching? For instance, assume that the

content provider just deploys one origin server to deliver

videos to users across wide geographic areas, and it’s likely

that multi-users watch the hot videos simultaneously. On one

hand, with the number of concurrent users increases, the origin

server would suffer from heavy access load, and even could

cause the server to crash. On the other hand, users from

faraway regions would experience long network delay due to

the long propagation distance. It is worth noting that, even a

few seconds of delay increase may lead users to abandon video

service [3]. Higher abandon ratio would induce huge losses to

content providers. To alleviate the load of origin server and

improve the user experience, content providers leverage the

CDN to deliver videos to end users. When a user access the

videos, the nearest edge server is used to ensure the access

delay and reduce the burden on the origin server if there

are copies of the demanded videos. If there is no copy of

the requested video in the edge server, the edge server will

request it from the origin server acting as a proxy and then

send the contend fetched from the origin server to the user. In

this case, an additional traffic cost from the source server to

edge server will be taken into account, and the overall delay

increases significantly. Although the CDNs take advantage

of the distributed framework and the caching technology to

reduce the traffic costs, the efficiency depends mainly on the

performance of the caching algorithms. The content caching

strategy is important to keep the hot objects which are most

likely to be accessed in the cache.

Normally, the purpose of content caching is to maximize

the hit ratio of requests not only within recent time but

also over a long period of duration. Moreover, new caching

methods are designed to minimize the downloading delay,

energy consumption and network congestions, or maximize

user’s QoE [4]. It is also important to make sure that caching

algorithms have low overhead and are easy to be implemented,

especially in the case facing a huge amount of data.

What to cache? Generally, we cache static contents such as

videos and images which can be reusable in the edge servers

to guarantee the performance. Note that caching in CDNs may

be ineffective in the dynamic contents transmission scenarios,

such as cloud gaming which focuses on the interactive contents

between end users and game servers.

How to cache? According to the two kind of decisions

made by caching strategies, caching policies are divided into

two classes. One is the admission policy, which decides

whether put the new coming objects into cache. Another is the

eviction policy, which decides which object should be evicted

out of the cache when there is no capacity for the coming

objects. While most approaches focus on the eviction policy

and put the objects into cache when they are accessed at the

269

2019 IEEE International Conference on Service-Oriented System Engineering (SOSE)

978-1-7281-1442-2/19/$31.00 ©2019 IEEE
DOI 10.1109/SOSE.2019.00046

first time. This may lead “cache pollution” caused by cache

space occupancy by objects which is request only once or a

few times. To this end, some works [5], [6] focus on admission

policy while improving the efficiency of eviction policy.

Over the past two decades, lots of approaches are proposed

to improve the performance of classical methods or make

dedicated network architectures effective and flexible in terms

of caching. Especially, some works [4], [7]–[11] use machine

learning or data-driven methods to get outstanding results.

Considering the historical development of content caching and

the new ways it may benefit from, we survey the existing

caching strategies and discuss the problems when designing a

potential caching strategy in the future.

The remainder of this paper is organized as follows. We first

review the classical caching methods in Section II. We then

survey the latest caching methods which is based on learn-

ing methods in Section III. Section IV discusses the design

problems about datasets and implementation. We conclude this

work in Section V

II. CLASSICAL CACHING APPROACHES

In this section, we mainly review the classical caching

approaches. In the earlier days, caching algorithms are origi-

nally derived from page replacement algorithms in operating

systems, such as FIFO (First In First Out), LRU (Least

Recently Used) and LFU (Least Frequently Used). After LRU

and LFU are proposed, lots of approaches based on these two

methods emerged, and some works take the content size into

account, which are unfolded as follows.

A. LRU-based approaches

LRU replaces the least recently requested content when the

cache is full, which can be implemented by an ordered queue.

The most recently accessed content is always at the top of the

queue. In other words, when the requested content is in the

cache, it will be move to the top of the ordered queue. If the

request content is not in the cache and there is no capacity for

new arrivals, the content in the queue’s bottom, which is the

least recently accessed, will be evicted out of the cache.

The classical LRU method is easy to implement and has a

low overhead. It works well in the random access occasion.

However, it takes very few information about the access

history of objects into account, and keeps considerable amount

of objects with low popularity in the cache. This wastes

the cache that might be used to accommodate more popular

objects. To this end, LRU-K [12] is proposed to include the

historical insights for LRU. LRU-K evicts the object which

has the maximum Backward K-distance. The Backward K-

distance bt{p,K} of object p at time t is defined as:

bt{p,K} =
{
x , if case1

∞ , if case2
(1)

where case1 is: p is accessed at time t − x and is accessed

K − 1 times from time t − x to time t, and case2 is: p is

accessed less than K times until time t. When K = 1, LRU-1

is same as LRU. What’s more, LRU-2 can achieve most of the

advantages across the different K values. LRU-K fills the gap

left by the LRU’s neglect of access history, quickly removing

the objects with very few request times.

However, the LRU-K method has a higher overhead to

implement. Then 2Q [13] is proposed to achieve the similar

hit ratio to LRU-K while exhibiting a low computational

complexity. The simplified 2Q consists of two queues. One is

a FIFO queue A1 which is a collaboration queue; the other one

called Am, is used for cache list which is managed following

the LRU rule. The new coming objects are first placed in the

queue A1, when an object is accessed and it is still in A1,

then put the target object into the cache list Am. 2Q focuses

on both the admission policy and the eviction policy, and it

can be implemented with constant time overhead.

LRU-K and 2Q require selecting tunable parameters offline,

and the performance depends on the selected parameters.

To this end, an online self-tuning method called adaptive

replacement cache [14] (ARC) are developed, which achieves

a low overhead by maintaining two LRU lists. The first LRU

list L1 contains contents that have been requested only once

recently. The second LRU list L2 contains contents that have

been requested at least twice recently. Briefly, the main idea

of ARC is to keep m top contents from list L1 and c − m
top contents from list L2 in the cache, where c is the cache

capacity, 0 � m � c. ARC tries to adjust m adaptively

according to the request characteristics of the contents which

were recently evicted from the cache.

B. LFU-based approaches

Instead of evicting contents according to the recency, LFU

evicts the least frequently accessed content out of cache when

the cache is full. LFU is widely used when the object access

distribution conforms to a power law [15], because it stores

contents with high popularity in the cache. LFU usually per-

forms well over a fixed object access distribution and a fixed

requested object set [16], [17]. However, it is not adaptable

to the traces whose request characteristics and request object

set vary significantly over time. For example, assume that the

requested objects set is {A,B,C,D} at time t, where each

letter stands for a requested object. While at time t+Δt, the

set changes to {E,F,G,H}. In this case, LFU may work even

worse than LRU. Further more, LFU is difficult to implement

with low overhead as it needs the statistical information about

the access history of all the objects requested [18]. This is

because LFU needs to maintain large and complex meta-data

and requires a logarithmic implementation complexity in cache

size, making LFU take a long time to make caching decisions

with a large cache capacity.

To this end, In-Memory LFU [19] and WLFU [18] are

proposed to improve the performance of LFU in various

cases. In-Memory LFU takes only the request history of the

content in cache into consideration, alleviating the high cost

of maintaining the request history of all contents. On the other

hand, WLFU adds a time window to the LFU methods, making

LFU to focus on the request history of the last n requests,

where n is the length of the window.

270

In addition, LRFU [20] is proposed to leverage the CRF

(Combined Recency and Frequency) value to take both recency

and frequency into consideration when evicting an object out

of cache. The CRF value of content p which has been accessed

k times at time t is the weighted sum of the time spans, noted

as CRF (p, t) :

CRF (p, t) =

k∑
i=1

W (t− ti) (2)

Where ti is the time when content p is accessed the i th

time, W is the weighted function. Generally, in order to give

more weight to recent requests, the weighted function is a

monotonically nonincreasing function. LRFU can choose the

proper weight function to make a trade-off between recency

and frequency.

C. Size-aware approaches

Most of the methods aforementioned assume that all con-

tents have the same size and the cache capacity is a constant.

While in reality, contents have different sizes and the number

of objects that the cache can store also changes as the sizes of

contents change. To this end, LRU-S [21] is used to move the

requested file based on LRU queue with a probability related

to the file size. Adaptsize [5] is proposed to set a dynamic

threshold of file size to decide which file is to be cached

using a Markov chain model combined with a LRU queue.

This method admits the objects with probability e−size/c, and

adjusts the parameter c online based on the Markov model.

Adaptsize is in favor of admitting small size objects to increase

hit ratio under a size-limited cache. If there are more popular

big-size contents, it may not contribute noticeably to traffic

savings.

III. LEARNING-BASED APPROACHES

In this section, we briefly investigate the emerging learning-

based approaches over the last two years, as shown in Table I.

Most of them focus the caching strategies applied in CDN

edge servers and the base stations (BSs) in wireless networks.

Until 2014, there is no particular caching strategies for CDNs,

most of which were still using commonly methods like LRU

and LFU, or their variants [22]. But the traditional methods

face big challenges with the dramatic growth of data through

CDNs and the fast-changing access characteristics. Recently,

machine learning is promising due to the rapid development of

computer hardwares. Especially, deep learning had made a lot

of significant achievements in various fields. which motivated

the researchers try to apply the learning methods to resolve

network problems [23]. Most of these researches use machine

learning to solve congestion control and routing tasks. At

the same time, there emerged some learning-based caching

strategies [4], [7]–[11].

According to the problem formulation of the works, we

briefly divide them into two classes. One is the Popular-
ity Prediction, where the main idea of these approaches is

using learning-based methods to estimate the popularity of

contents in the future and guide the caching decision of

Update content
features, store

them in Feature
Dataset

Get the
popularity

forecast and
make caching

decision

Update the
Leaning
Database

Updates Query Learns

Fig. 1. Workflow of the PopCaching system.

classical caching strategies such as LRU. Another is the Policy
Learning, which uses learning-based algorithms make caching

decisions, such as the content sharing between nodes and

whether to cache the requested content.

A. Popularity Prediction

To estimate the future popularity of contents is the most

common idea when design a caching strategy. In this way, the

caching performance is limited to the popularity prediction ac-

curacy. Classical approaches always apply the simple statistic

information of historical requests to estimate popularity, which

suffers from the poor performance because of the various

request patterns and dynamic users’ behaviors. To this end,

some works [4], [7], [10], [11] use learning based methods

to get a better prediction. PopCaching [7] is proposed to

leverage the online popularity prediction to make a better

caching replacement decision. It is a caching system which

has two more modules than the conventional cache node: the

Feature Updater and the Learning Interface, and two more

databases: Feature Database and Learning Database. Fig. 1

shows the workflow of PopCaching. It contains three steps.

The first step is Updates. When there is a new request, the

features of the requested object are updated and stored into the

Feature Database. Then, PopCaching requests the popularity

prediction from the Learning Database and decides whether

to cache the target object according to the prediction. Finally,

when the real popularity of the target object is revealed, the

content-popularity pair will be store in the Learning Database.

This is a online learning process and it dose not need the

training phase. PopCaching uses a simple learning method

based on the history of the requested objects and the partition

of the feature space. The features it collects could be the user’s

profile and the property of contents. Note that PopCaching

does not directly learn the popularity of each object but the

relationship between the objects which have similar access

patterns. PopCaching is a complete caching system, however

it is difficult to deploy based on the subsistent cache node.

And its running speed is faster than LFU while much slower

than LRU.

In [4], an adaptive scheme is proposed for the YouTube

content caching in Cellular Networks. The main idea of this

approach is using extreme learning machine [25] (ELM) to

predict the popularity of contents, and use mixed-integer linear

programming (MILP) to decide where to place the content.

Moreover, this work compare the performance of ELM to other

popular machine learning methods in popularity estimation.

The ELM model with optimal neurons decided by stochastic

271

TABLE I
THE OVERVIEW OF LEARNING-BASED CACHING STRATEGIES IN OUR INVESTIGATION

Name Year Application Scenario Main Method DataSet Comparison Methods

Information
Exchange
Between
Nodes

†Li et al. [7]:
PopCaching

2016 CDN Popularity forecast
moive.douban.com
38 million requests

FIFO
LRU
LFU

LFUDA
MIN [24]

No

†Tanzil et al. [4] 2017 Cellular Network
ELM [25] MILP

SPSA [26]

NS-3 simulator
Youtube dataset:

12500 videos

FemtoCaching [27]
Bastug et al. [28]
David et al. [29]

No

‡Song et al. [8] 2017 Wireless Network MAB ADMM [30]
synthetic data sets:
20 unique objects

LFU LRU
Reference algorithm [31]

Yes

‡Zhong et al. [9] 2017 Wireless Network
Wolpertinger Policy [32]

DDPG [33]
synthetic data set:

5000 unique objects

LRU
LFU
FIFO

DQN-based [34]

No

†Narayanan
et al. [10]:
DeepCache

2018 CDN
LSTM [35]

Seq2Seq [36]

2 synthetic data sets:
50 unique objects

1425 unique objects

LRU
k-LRU [37]

No

†Li et al. [11]:
MFLRU
KnnDyn

2018 CDN

Recommendation
algorithms:

Matrix Factorization [38]
Collaborative Filtering

VoD sevice requests
LRU

FiF [24]
Yes

†Popularity Prediction, ‡Policy Learning

perturbation simultaneous approximation [26] (SPSA) shows

relatively high accuracy with a low running time.

In order to make full use of the access history to predict

the next popularity distribution, DeepCache [10] is proposed

using the Seq2Seq [36] model to predict the content popularity,

which leverages the temporal characteristics of the requests.

The main idea of DeepCache is to use the deep learning

networks to make more accurate prediction for traditional

caching strategies like LRU. DeepCache contains an object

characteristic predictor which is composed of an Encoder-

Decoder Model. The input of the predictor is the time sequence

of probability vectors of all unique contents. In each vector,

the request probability of every object is computed across

a sliding window. Moreover, the probability is calculated in

multi time scales. The output of the predictor is the request

probability of each object. After predicting the popularity, i.e.,
the request probability, DeepCache uses it to guide the caching

decision of LRU. In order to interoperate with LRU without

making caching system structure changes, the authors make

“fake requests” according to the output of predictor as the

input request trace of LRU.

Unlike DeepCache, Li et al. [11] proposes two data-driven

approaches, using recommendation algorithms to predict the

probability of contents in the next time slot. In this work, each

edge server is considered as a super user, i.e., a group of the

users served by this edge server. According to the access log of

the super user to all the contents, MFLRU (Matrix Enhanced

LRU Caching Strategy) uses Matrix Factorization [38] (MF) to

infer the future preference for the contents that have not been

accessed by this super user. MF methods is computationally

expensive which makes it difficult to make prediction in real

time. MFLRU combines MF and LRU together to balance the

speed of LRU and the high performance of the MF. KnnDyn is

then proposed in this paper to overcome the high cost of MF.

It use the K-Nearest-Neighbor (KNN) collaborative filtering

to make predictions in order to capture the smaller timescale

changes in the request characteristics.

B. Policy Learning

Unlike Popularity Prediction, Policy Learning mainly as-

sumes the future popularity of contents is unknown, making

decisions based on the requests observed and the caching

performance at the current time. For wireless networks, Song

et al. [8] propose to estimate the popularity distributions of

contents according to the historical requests, and then use

multi-armed bandit (MAB) learning to decide the content

caching and sharing between BSs. The workflow of content

request in wireless networks is similar to that in CDNs. BSs

are connected by links with each other. If a user requests a

content and the BS stores the targeted content, it will send

the content to the user directly. If there is no copy in the

local BS, the BS retrieves the requested content from other

BSs or CDN server. Then the caching problem is formulated

as to maximize the caching reward at each time-slot, where

the reward is given by the difference between the revenue

of content caching and the costs of content sharing. This is

a classical reinforcement learning problem. Two methods are

proposed, i.e.: the centralized algorithm named single player

MAB (SPMAB), and the decentralized algorithm named multi-

player MAB (MPMAB). The latter one is designed to reduce

the computational complexity of SPMAB. In order to achieve

rapid convergence, MPMAB limits the BSs to exchange local

information only with their neighbor BSs.

272

Considering that the optimal caching usually depends on the

future content access characteristics, there is no deterministic

solution at current moment. The execution process of the

caching algorithm is, in a sense, very similar to the interaction

between the agent and the external environment in deep

reinforcement learning (DRL). Therefore, Zhong et al. [9]

proposed to use DRL to make the caching decisions. This

method takes the total access number of each content in the

cache at three historical time scales in each time slot as the

states. The action is defined as replacing one of the content

in the cache with current requested content or not cache the

content. So if the cache capacity is C, there are total C + 1
candidate actions. The reward consists of a short-term and

a long-term reward, both of which are in proportion to the

access frequency of the current requested content in future.

Considering the running time and the adaptation to the variety

of the request patterns, the Wolpertinger architecture [32]

is employed. Compared to DQN-based (Deep Q-Network)

method [34], the proposed approach achieves competitive

performance and has a lower runtime. This DRL-based method

is novel for content caching, however it assumes that all

contents have the same size and the cache capacity is constant,

which does not match the actual situation of real caching

systems.

IV. REMAINING ISSUES ABOUT CONTENT CACHING

In this section, we discuss some problems that might be

encountered when design a flexible caching system.

A. Dataset

Nowadays, content caching plays a very important role in

various scenarios. In order to guarantee the generalization

performance of caching algorithms, it is important to choose

a reasonable dataset for evaluation. Previously, researchers

focused on synthesizing datasets by specifying request distri-

butions. In order to apply the caching strategies to the existing

system, especially in the case of the caching performance is

obviously affected by user behaviors, more and more works

focused on synthesizing datasets based on real requests or

directly using real request records to evaluate caching algo-

rithms. The most common way to synthesize a dataset is to

generate corresponding content requests based on the Zipf-like

distribution [15], or other probability models.

Synthesizing realistic request data is usually based on the

accurate workload characterization. Tang et al. [39] proposed

a publicly available streaming media workload generator ac-

cording to the analysis on two long-term traces of streaming

media. Summers et al. [40] discussed the methodologies

for generating HTTP streaming video workloads. Curiel et
al. [41] discussed the workload generation approaches in

details. There were many researches focusing on the users’

behaviors and content request characteristics [42]–[44].

Considering user’s privacy and other issues, it is difficult

to gain a open dataset involving requests from real system.

There are some works using real-world datasets from CDNs or

websites, but they are not publicly available. Some other works

give ideas for the acquisition of datasets. Tanzil et al. [4] used

YouTube API to collect features to estimate the viewcount of a

YouTube video. Chang et al. [45] mentioned an open dataset

from the MOMENTUM projects. And PopCaching [7] used

crawler to get dataset from websites.

B. Simulation Platform

We find that there are very few caching strategies are

evaluated in a real system. Instead, most of them are evaluated

by simulations with certain assumptions. It is worth noting

that, Cliffhanger [46] is implemented on Memcached [47]

and tested in Memcachier [48] applications. Adaptsize [5] is

implemented on top of Varnish [49] which is a production

caching system. It is also evaluated in a dedicated data center

and compared with production caching system such as Varnish

and Nginx. Thus, if we can implement our methods in real

system and test it with real-world datasets, it will bring

more reliable and trustworthy guidance to our researches. The

evaluation of caching algorithms is an interesting issue that

we can explore.

V. CONCLUSION

In this paper, we mainly review the classical caching

methods and the latest learning-based caching approaches.

In the past two decades, lots of methods are proposed to

solve the caching problems in operating systems and content

delivery tasks. Most of them are based on recency, frequency

and content size. Recently, various machine learning methods

have come back to people’s view due to the advances of

hardware capability, resulting in some learning-based caching

strategies leveraging deep learning, reinforcement learning

and recommendation algorithms. These methodologies use

learning-based methods to predict content popularity in future

or to learn caching policy. Besides, we also discusses the

potential issues such as datasets and implementation. We hope

this paper can be a reference for further researches.

ACKNOWLEDGMENT

This work was supported in part by the National

Key Research and Development Program under Grant No.

2016YFB1000102, in part by the National Natural Science

Foundation of China under Grant No. 61571215, 61672318,

61631013, and in part by the Fundamental Research Funds for

the Central Universities under Grant No. 2018CDXYRJ0030.

Corresponding authors: Xu Zhang and Zhan Ma.

REFERENCES

[1] V. Cisco, “Cisco visual networking index: Forecast and
methodology 2016–2021.(2017),” 2017. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.html

[2] H. Yin, X. Zhang, S. Zhao, Y. Luo, C. Tian, and V. Sekar, “Tradeoffs
between cost and performance for cdn provisioning based on coordinate
transformation,” IEEE Transactions on Multimedia, vol. 19, no. 11, pp.
2583–2596, Nov 2017.

[3] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs,”
IEEE/ACM Transactions on Networking (TON), vol. 21, no. 6, pp. 2001–
2014, 2013.

273

[4] S. S. Tanzil, W. Hoiles, and V. Krishnamurthy, “Adaptive scheme
for caching youtube content in a cellular network: Machine learning
approach,” Ieee Access, vol. 5, pp. 5870–5881, 2017.

[5] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize: Or-
chestrating the hot object memory cache in a content delivery network.”
in NSDI, 2017, pp. 483–498.

[6] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Computer Communication Review, vol. 45,
no. 3, pp. 52–66, 2015.

[7] S. Li, J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content
caching,” in Computer Communications, IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on. IEEE, 2016, pp. 1–9.

[8] J. Song, M. Sheng, T. Q. Quek, C. Xu, and X. Wang, “Learning-based
content caching and sharing for wireless networks,” IEEE Transactions
on Communications, vol. 65, no. 10, pp. 4309–4324, 2017.

[9] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement
learning-based framework for content caching,” in Information Sciences
and Systems (CISS), 2018 52nd Annual Conference on. IEEE, 2018,
pp. 1–6.

[10] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang,
“Deepcache: A deep learning based framework for content caching,” in
Proceedings of the 2018 Workshop on Network Meets AI & ML. ACM,
2018, pp. 48–53.

[11] G. Li, Q. Shen, Y. Liu, H. Cao, Z. Han, F. Li, and J. Li, “Data-driven
approaches to edge caching,” in Proceedings of the 2018 Workshop on
Networking for Emerging Applications and Technologies. ACM, 2018,
pp. 8–14.

[12] E. J. O’neil, P. E. O’neil, and G. Weikum, “The lru-k page replacement
algorithm for database disk buffering,” Acm Sigmod Record, vol. 22,
no. 2, pp. 297–306, 1993.

[13] D. Shasha and T. Johnson, “2q: A low overhead high performance buffer
management replacement algoritm,” in Proceedings of the Twentieth
International Conference on Very Large Databases, Santiago, Chile,
1994, pp. 439–450.

[14] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead
replacement cache.” in FAST, vol. 3, no. 2003, 2003, pp. 115–130.

[15] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distributions
in empirical data,” SIAM review, vol. 51, no. 4, pp. 661–703, 2009.

[16] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
zipf-like distributions: Evidence and implications,” in INFOCOM’99.
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, vol. 1. IEEE, 1999, pp.
126–134.

[17] D. N. Serpanos and W. H. Wolf, “Caching web objects using zipf’s
law,” in Multimedia Storage and Archiving Systems III, vol. 3527.
International Society for Optics and Photonics, 1998, pp. 320–327.

[18] G. Karakostas and D. N. Serpanos, “Exploitation of different types of
locality for web caches,” in Computers and Communications, 2002.
Proceedings. ISCC 2002. Seventh International Symposium on. IEEE,
2002, pp. 207–212.

[19] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374–
398, 2003.

[20] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim,
“Lrfu: A spectrum of policies that subsumes the least recently used and
least frequently used policies,” IEEE transactions on Computers, no. 12,
pp. 1352–1361, 2001.

[21] D. Starobinski and D. Tse, “Probabilistic methods for web caching,”
Performance evaluation, vol. 46, no. 2-3, pp. 125–137, 2001.

[22] M. Z. Shafiq, A. X. Liu, and A. R. Khakpour, “Revisiting caching
in content delivery networks,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 42, no. 1. ACM, 2014, pp. 567–568.

[23] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Network,
vol. 32, no. 2, pp. 92–99, 2018.

[24] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[25] G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme
learning machines: A review,” Neural Networks, vol. 61, pp. 32–48,
2015.

[26] J. C. Spall, Introduction to stochastic search and optimization: estima-
tion, simulation, and control. John Wiley & Sons, 2005, vol. 65.

[27] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed

caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, 2013.

[28] E. Baştuğ, M. Bennis, and M. Debbah, “Proactive caching in 5g small
cell networks,” Towards 5G: Applications, Requirements and Candidate
Technologies, pp. 78–98, 2016.

[29] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ra-
makrishnan, “Optimal content placement for a large-scale vod system,”
in Proceedings of the 6th International COnference. ACM, 2010, p. 4.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[31] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy,
“Learning distributed caching strategies in small cell networks,” in
Wireless Communications Systems (ISWCS), 2014 11th International
Symposium on. IEEE, 2014, pp. 917–921.

[32] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

[33] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[36] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[37] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to
the performance analysis of caching systems,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems, vol. 1,
no. 3, p. 12, 2016.

[38] M. Jamali and M. Ester, “A matrix factorization technique with trust
propagation for recommendation in social networks,” in Proceedings of
the fourth ACM conference on Recommender systems. ACM, 2010, pp.
135–142.

[39] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat, “Medisyn: A synthetic
streaming media service workload generator,” in Proceedings of the 13th
international workshop on Network and operating systems support for
digital audio and video. ACM, 2003, pp. 12–21.

[40] J. Summers, T. Brecht, D. Eager, and B. Wong, “Methodologies for
generating http streaming video workloads to evaluate web server
performance,” in Proceedings of the 5th Annual International Systems
and Storage Conference. ACM, 2012, p. 2.

[41] M. Curiel and A. Pont, “Workload generators for web-based systems:
Characteristics, current status, and challenges,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 1526–1546, 2018.

[42] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding user
behavior in large-scale video-on-demand systems,” in ACM SIGOPS
Operating Systems Review, vol. 40, no. 4. ACM, 2006, pp. 333–344.

[43] T. Qiu, Z. Ge, S. Lee, J. Wang, Q. Zhao, and J. Xu, “Modeling channel
popularity dynamics in a large iptv system,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 37, no. 1. ACM, 2009, pp. 275–
286.

[44] Z. Han, J.-A. Ma, and H. Zhao, “An access pattern model analysis for
online vod multimedia flow for bigdata,” in 2018 IEEE 4th International
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE
International Conference on High Performance and Smart Comput-
ing,(HPSC) and IEEE International Conference on Intelligent Data and
Security (IDS). IEEE, 2018, pp. 34–38.

[45] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, “Learn to cache:
Machine learning for network edge caching in the big data era,” IEEE
Wireless Communications, vol. 25, no. 3, pp. 28–35, 2018.

[46] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Cliffhanger: Scaling
performance cliffs in web memory caches.” in NSDI, 2016, pp. 379–392.

[47] “Memcached,” https://github.com/memcached/memcached/wiki/
DevelopmentRepos.

[48] “Memcachier,” https://www.memcachier.com/.
[49] P. Graziano, “Speed up your web site with varnish,” Linux Journal, vol.

2013, no. 227, p. 4, 2013.

274

