
A Cost-efficient Protocol for Open Blockchains
Chunlei Li

Department of Informatics,
University of Bergen, Bergen, Norway

Chunlei.Li@uib.no

Chunming Rong and Martin Gilje Jaatun
Dept. of Electrical Engineering and Computer Science,

University of Stavanger, Stavanger, Norway
{Chunming.Rong,Martin.G.Jaatun}@uis.no

Abstract—Current proof-of-work blockchains are not sustain-
able in terms of energy needed to run them. In this paper we
propose a new scheme that avoids wasted proof-of-work by a
dynamic probabilistic method, where the consensus algorithm
can be adjusted according to the parties’ required assurance
levels.

I. BACKGROUND ON BLOCKCHAIN

The core ideas behind blockchain technology emerged in
1991 when a signed chain of information was used as an
electronic ledger for digitally signing documents in a way
that could easily show none of the signed documents in the
collection had been changed [1]. In essence, a blockchain
is a distributed ledger of cryptographically signed digital
assets that are grouped into blocks, where each new block
is cryptographically linked to the previous after validation and
a consensus decision, such that modification of the assets in
a block becomes more and more difficult as the blockchain
extends [2]. The blockchain technology has enabled the suc-
cess of many e-commerce systems such as Bitcoin, Ethereum,
Ripple, and Litecoin. Because of this, blockchains are often
viewed as bound to Bitcoin or possibly e-currency solutions
in general. However, the technology is more broadly useful
and is available for a variety of applications.

A. The Blockchain Behind Bitcoin

As the core technology behind the cryptographic cur-
rency Bitcoin, blockchain was first conceptualized in a 2008
pseudonymous paper by Satoshi Nakamoto [3]. Bitcoin is
an electronic payment system based on cryptographic proof,
which allows any two willing parties to transact directly with
each other without the need for a trusted third party.

In contrast with other e-payment schemes, Bitcoin was
designed to be a completely peer-to-peer network, consisting
of a large number of independent nodes which verify incoming
transactions independently of each other. These nodes use a
synchronization protocol that allows the nodes to agree on
a common transaction history. Such a common transaction
history is known as the Bitcoin blockchain, see Fig. 1 for
a simplified version of a Bitcoin blockchain. By using the
blockchain, Bitcoin became the first successful digital currency
that solves the double-spending problem without the presence
of a trusted intermediary.

As illustrated in Fig. 1, a Bitcoin block consists of two parts:
block header and block data. A bunch of new transactions is

collected into the data part of a block. All valid transactions
in block data are hashed into a Merkle tree [4], [5]: copies
of each transaction are hashed, which are paired and hashed
iteratively until a single hash, known as the Merkle root, is
ultimately generated (see Fig. 2). The Merkle root of all valid
transactions is stored in the block header, which also stores
the hash of the previous block’s header, timestamps, nonce
and other necessary information.

The blockchain of Bitcoin is maintained as follows:

1) the creation of a new block requires a large amount of
work, known as proof-of-work (PoW);

2) peers are motivated by incentives (BTCs) in the network
to create a new block ;

3) a new block is created after the difficult target for PoW
is met;

4) the new block is appended to the existing chain of blocks
through hash functions, which ensures immutability of the
blockchain;

5) in case of branching, the longest chain that involves
most PoW is accepted, and all other shorter ones are
abandoned.

PoW is the critical part in the Bitcoin blockchain, which
effectively prevents the issue of double-spending and the Sybil
attack [6], in which a malicious entity could set up many peers
that subvert the election and inject faulty information.

B. Blockchain beyond Bitcoin

Bitcoin is by far the most widely known system that is
intrinsically tied to blockchain technology. Although the Bit-
coin itself is highly controversial, the blockchain technology
has worked flawlessly and has a wide range of applications
beyond Bitcoin [7].

As it evolves in new digital currencies and other applica-
tions, the original Bitcoin blockchain has been modified in dif-
ferent ways. However, after breaking down recent blockchain
proposals, one can observe the following critical elements of
blockchains:

• a distributed network - all blockchains are maintained
in a distributed network without a central repository,
where an identical copy of the ledger is shared across
the network;

• an immutable ledger - the blocks in the ledger are
cryptographically chained in chronological and linear

Fig. 1. Simplified Bitcoin Blockchain

Merkle root= h(u||v)

v=h(s||t)

t=h(o||p)

p=h(h)o=h(g)

s=h(m||n)

n=h(f)m=h(e)

u=h(q||r)

r=h(k||l)

l=h(d)k=h(c)

q=h(i||j)

j=h(b)i=h(a)

a b c d e f g h
Fig. 2. Simple Merkle tree with Merkle root – a, b, etc. represent data chunks

order, which protects the digital transactions stored in the
ledger from being modified;

• a consensus protocol - the shared ledger is maintained in
a distributed fashion according to a consensus protocol.
Consensus is a core concept in distributed systems. More
concretely, a new block can be added to the blockchain
only if it’s validated by a pre-agreed consensus in the
network. How to reach consensus in a distributed and
trustless network is a variant of the Byzantine Gener-
als (BGs) problem [8]. Proof-of-Work is the distributed
consensus mechanism used in the Bitcoin blockchain.
However, the PoW consumes a massive amount of CPU
power to maintain the Bitcoin network. Therefore, other
consensus mechanisms have been proposed in recent
years to remedy the drawback of PoW, including (del-
egated) proof of stake (PoS) and practical Byzantine
fault tolerance (PBFT), etc. Different consensus strategies
are proposed from different considerations. The PoS

consensus is based on the idea that the more stake a
user has in the system, the more likely it will want
the system to succeed [9], [10]. PoS-based blockchain
systems use the amount of stake a user has as a determin-
ing factor for new block creation. The methods for how
the blockchain system uses the stakes can vary – from
random selection of staked users, to multi-round voting,
to a coin aging system. Regardless of the exact approach,
users with more stake are more likely to produce new
blocks. The PBFT was proposed by Castro and Liskov
[11] to tolerate Byzantine faults and made it practical
to be used in even asynchronous environments, where
the previous algorithms fell short. It is considered to be
the first practical algorithm to achieve consensus when
dealing with Byzantine faults. The PBFT was employed
in the Hyperledger Fabric [12] as the primary consensus
algorithm.

C. Deficiencies of the PoW in Bitcoin blockchain

In Bitcoin, the pending transactions are stored in a trans-
action pool. For the incentive upon successful generation of
a valid block, the mining nodes are competing on creating a
hash less than a specified target, which is simply a pre-defined
threshold. The effort required for generating a valid block
is the already mentioned proof-of-work (PoW). However, as
identified in the literature, this protocol suffers from several
weaknesses:

Waste of Resources. Each PoW problem generally requires
108 Giga hashes to be computed. The new ASIC machines
used by the miners are built from scratch and are used to mine
Bitcoins. These machines cannot serve any other purpose.
Thus the total computing power spent on Bitcoin mining could
theoretically be spent on other real world problems. More wor-
ryingly, the electricity consumed by Bitcoin mining machines
has become a serious problem. A new study estimates that this
process consumes at least 2.6 GW of power— almost as much
electric power as Ireland consumes. Some speculate that this
might rise to the level where it would account for almost half
a percent of the world’s electricity consumption [13].

Unfair Competition. A group of miners with large compu-
tational resources may set up a mining pool so as to control
more than 50% of network computing power. In such a case
the mining pool could launch a 51% attack, e.g., modifying
the ordering or excluding the occurrence of transactions, or
indulging a double spending by reversing transactions that they
send. The mining pool keeps on earning maximum profit that
leads to the socially undesirable problem of “rich get richer,
poor gets poorer”;

Slow Block Creation. The PoW protocol requires on average
10 minutes to generate a new block. Within the verification
time a Bitcoin exchange might be completed. An attacker can
send an illegitimate transaction log to the seller and another
log to the Bitcoin network, where the buyer gets back his
currency. By the time the seller realizes the fraudulent amount,
the transaction may have been carried out. For this reason,
the seller is suggested to wait for 6 new blocks are created
before completing the exchange. This is unbearable in many
circumstances, e.g., for in-person purchases;

Selfish Mining. Eyal and Sirer [14] showed that the network
is vulnerable against selfish mining, where only a small portion
of the computing power is used to cheat. The strategy of selfish
mining is that selfish miners keep their mined blocks without
broadcasting and release their private branches when some
requirements are fulfilled. Before the publishing of the private
blockchain, honest miners are wasting resources on a useless
branch while selfish miners are mining the private branch
without competitors. By doing so, the selfish miners tend to
get more revenue once they are ahead of honest miners. It was
shown by Sapirshtein et al. [15] that there are more advanced
selfish mining strategies that are more profitable even for small
miners.

II. A NEW BLOCKCHAIN DESIGN

With the essential elements of the blockchain technology in
mind, now we propose a new design of a public blockchain.
The primary objective of our design is to address the resource-
intensive issue of PoW in the Bitcoin-like blockchain proto-
cols, where the distributed network is open to everyone and
each node is equally treated. The new design shares a lot
common elements and strategy with the known blockchains
such as Bitcoin, and the core difference is the creation and
validation of new blocks. Fig. 3 demonstrates the process of
block creation in a nutshell.

A. Terminologies

Before explaining the design in detail, we first introduce
some terms that are commonly used in the literature. Nodes
are connected to a peer-to-peer network and propagate new
information via gossip1 in the network. Each node keeps an
identical copy of an order sequence of events in the form
of a blockchain (The Bitcoin network defines full nodes and
light weight nodes. Nodes that are responsible for creating new
blocks in the network are termed mining nodes by convention.
Here we define only full nodes for simplicity. But the light
weight nodes can be defined in an exact same manner).
Accounts in the network are identified by their public key or
addresses obtained from the encoding of public keys. Each
account can hold a sum of assets and can transfer its assets to
any account in the network with transactions. The structure of
each transaction is the same as that of Bitcoin. A transaction is
valid only if all required rules are met, e.g., the corresponding
account has valid balance (or inputting currencies) which are
sufficient for the current transaction.

B. Details of the design

The key idea of the design is that in each round of block
creation, the mining node is dynamically assigned on basis of
the input information of the previous block, the mining pool
and the transactions in a random way.

As shown in Fig. 3, the process of block creation is
composed of three phases:
Phase 1. This phase is the leftmost column of blocks in
Fig. 3. At some point, when a valid block is added to the
blockchain and a new block is to be created, the newly
added block acts as a previous block, the pending transactions
{TX0, TX1, · · · , TXN−1} are added to a pool of transac-
tions, which is implemented exactly the same as other Bitcoin-
like cryptocurrencies.
However, there are two new features in the design. Firstly, an
optional field, which is used to indicate the number of mining
nodes that the sender and receiver of the transaction prefer to
have in the mining phase, is added in each transaction. This
field is left empty by default. If no number is specified, the
sender and receiver will be believed to accept any number
of mining nodes. If this field is filled with a number (agreed

1Gossip means that each node sends the information to all its neighbors,
each neighbor in turn sends the information to all its neighbors, and so on.

Previous Block

Pool of
Transactions

Pool of
Mining Nodes

Phase 1

Hash of
Previous Block

Transactions
for New Block

Index of
Mining Nodes

Phase 2

1) Compute the number of
mining nodes

2) Compute the hash of inputs
3) Generate indices from hash
4) Assign indexed nodes
5) Compete in a consensus

algorithm for incentive

Phase 3

a new block is created

Fig. 3. Design of a cost-efficient block creation

by the sender and receiver), such a number will be an input
to determine the final number of mining nodes in Phase 3.
Secondly, we added a new component, termed as mining
registration in the design, which is responsible for registering
all nodes that plan to participate in the mining process into
a pool of mining nodes. The implementation of this new
component may be the same as the implementation of the
pool of transactions in Bitcoin or other cryptocurrencies;

Phase 2. This phase is primarily for collecting input informa-
tion for Phase 3. More concretely, the hash value of the previ-
ous block from a system-wide hash function, e.g., SHA256 or
SHA-3, is computed; the system prioritizes the pending trans-
actions according to a general strategy rule of priorities, e.g.,
the transactions with higher transaction fees and longer age
in the pool are comparatively more prioritized and those with
larger size are less prioritized, and collects a list of transactions
{TXi0 , TXi1 , · · · , TXiM−1

} with higher priorities and total
size up to the limit of the data size in a block, and another
list of to-be-added transactions {TXiM , TXiM+1

, · · · , } for
replacing invalid transactions in the first list; the system finally
labels the nodes in the mining pool at the current stage as
Node1, Node2, · · · , Noden;

Phase 3. This phase is the column in gray in Fig. 3. It is
the crucial part of our design that assigns mining nodes in a
sophisticated way:

1) the calculation of the number of nodes for the mining
competition: the system collects all the transaction fee Feej
and the preferred number Numj in each transaction TXij ,
j = 0, 1, · · · ,M − 1 and compute the final number

k =

⌈∑M−1
j=0 Feej ∗ Numj∑M−1

j=0 Feej

⌉
(mod δn) + 1,

where dxe denotes the least integer equal to or greater than
x and δ is a threshold in the system and set to be 1 by
default. If no prefer number is specified in all transactions
TXi0 , · · · , TXiM−1

or k happens to be zero (of which

the probability is negligible), then the system randomly
generated a number k in the range of 1 to n.

Here in the calculation of k the transaction fee in each
transaction is used as the weight of contributing its preferred
to the determination of k. Such a consideration originates
from many real-world scenarios - the voice of customers
are heard more when they pay more.

2) the calculation of the hash: use the system-wide hash
function, e.g., SHA256 or SHA-3, to calculate the hash
value H of the relevant inputs, including the hash of the
previous block, the Merkle root of selected transactions, the
current time-stamp, the identification/address of registered
mining nodes;

3) the creation of index of mining nodes: based on the hash
value H in the previous step, the system first compute a
binary string s = s0s1 · · · = H||Hash(H)||Hash2(H)|| · · ·
until its length l > kτ , where τ = blog2(n)c; then the
system derives k pairwise integers from substrings i1 :=
s0 · · · sτ−1, i2 := sτ · · · s2τ−1, · · · , ik := s(k−1)τ · · · skτ−1

(repeat the process if there are same integers among
i1, i2, · · · , ik). The integers i1, i2, · · · , ik are used as indices
to select mining nodes in the next step;

4) the assigning of mining nodes: the system selects nodes
Nodei1 , · · · ,Nodeik from the registered mining nodes
Node1, · · · ,Noden and assign them as mining nodes;

5) the consensus mechanism: if k happens to be 1, then the
lucky node Nodei1 is directly responsible for the whole
process of creating a new block, including verifying the
validity of the transactions TXi0 , · · · , TXiM−1

, replace
invalid transactions with valid ones from the pool of pending
transactions, create a block according to the pre-defined
format of the blocks with an additional field including k,
n and H; if k > 1, the assigned k mining nodes choose a
consensus algorithm pre-defined in the system and compete
for the incentives.
Here the pre-defined consensus in the system is not neces-

sarily fixed. It could be any one of the known consensus
algorithms, e.g., PoW [3], PoS [9] and PBFT [11]. Note
that the number k is highly likely to be smaller than the total
number n of nodes (or could be made to be much smaller
than n by setting the threshold). In this way, the process of
randomly selecting k mining nodes actually improves the
known consensus algorithms. If the consensus algorithm is
chosen to be PoW, then our design will be more fair and
save a lot of computing power in the mining process, which
will be discussed in detail later; if the consensus algorithm
is chosen to be PoS, the issue of “The rich get richer and
the poor get poorer” in PoS is also resolved to some extent
since more randomness is added in the process.

After Phase 3, a new block will be created and ready to be
appended to the blockchain after successful verifications by
all other nodes. This process is the same as other blockchains.

III. ANALYSIS OF THE NEW BLOCKCHAIN

In this section we shall look into the design and further
analyze it from different aspects.
Flexibility. As described in Phase 3 in Subsection II-B, the
creation of a new block in our design is more like a framework
than a specific design regarding the consensus algorithms. The
set of consensus algorithms can be further extended when
better rules are available. The system threshold for the number
of mining nodes in each round can be also adjusted flexibly
according to the throughput, network delay and performance
of the whole system. In addition, the design currently focuses
on the process of block creation, but doesn’t concretely define
the structure of a block and what kind of transactional data
is to be stored in the blockchain. This flexibility allows for
new structure of the block as well as a variety of transactional
data;

Security. Security and efficiency are put on a pair of scales
and balancing between them depends on the priority of appli-
cations. In our proposal, if k is voted as one, a new block can
be created at greatest efficiency and highest risk from security
attacks; if k is voted as n and all mining nodes in the network
have signed up in Phase 1, the creation of a new block is the
same as Bitcoin network when PoW is chosen as the consensus
algorithm. We now investigate the expected computing power
controlled by an attacker in general. Denote by P the total
computing power of the n registered mining nodes. Suppose
that the attacker controls m out of n ming nodes, of which
the computing power Pattack = δ · P . From the generation of
index set I = {i1, i2, · · · , ik} for the assigned mining nodes,
we can see that those k mining nodes are picked out randomly.
Hence, the expected computing power among k nodes under
the attacker’s control is given by

E(Pattack) =
k∑
t=0

(
k

t

)(m
n

)t(n−m
n

)k−t
Et,

where Et is the expected computing power of random t out of
m malicious nodes. For simplicity, we assume the malicious

nodes have the same computing power at each node. In this
case we have Et = t

m · Pattack = t
m · δP , whence

E(Pattack)

=δP
k∑
t=0

t

m

(
k

t

)(m
n

)t(n−m
n

)k−t
=
δP
m

k∑
t=0

t

(
k

t

)(m
n

)t(n−m
n

)k−t
=
δkP
n

k∑
t=0

t
(k − 1)!

(k − t)!t!

(m
n

)t−1
(
n−m
n

)k−t
=
δkP
n

k∑
t=1

(k − 1)!

(k − t)!(t− 1)!

(m
n

)t−1
(
n−m
n

)(k−1)−(t−1)

=
δkP
n

k−1∑
t=0

(
k − 1

t

)(m
n

)t(n−m
n

)k−t
=
δkP
n

(
m

n
+
n−m
n

)k−1

=
δkP
n

.

Similarly, the expected computing power of random k nodes
is given by

E(Ptotal)

=

k∑
t=0

(
k

t

)(m
n

)t (n−m
n

)k−t

(Et +
(k − t)(1− δ)P

n−m)

=E(Pattack) +

k∑
t=0

(
k

t

)(m
n

)t (n−m
n

)k−t (k − t)(1− δ)P
n−m

=
δkP
n

+
(1− δ)kP

n
=
kP
n
.

From the above equations, we can see that the expected ratio
of computing under the attacker’s control is δ. That is to say,
if the computing power of malicious nodes and honest nodes
are uniformly distributed, the expected ratio of computing
power that the attacker controls for k nodes is identical to
that for n nodes, which indicates that the expected ratio of
computing power under the attacker’s control is independent
of the number of assigned nodes. For the cases where the
computing power is not uniformly distributed, the expected
ratio is difficult to estimate.
The above analysis provides a theoretic estimation on the
threat of a 51% attack. In the Bitcoin network, the attacker
with more than 50% computing power would always win
the competition of proof-of-work in theory. In practice, im-
plementing such an attack is definitely nontrivial. In our
design, with the randomness of assigned mining nodes, the
attacker can implement a successful 51% attack only if the
malicious computing power of t nodes is greater than the
honest computing power of k − t nodes, i.e.,

t

m
δ · P > k − t

n−m
(1− δ) · P,

which is equivalent to

δ

1− δ
· t

k − t
· n−m

m
> 1.

As opposed to the Bitcoin network where δ > 1 − δ implies
100% success of attack, the above inequality implies that the
success probability of the attacker depends on other factors,
the number of malicious mining nodes in the network and the
probability that t malicious nodes are picked out from k nodes,
which is

(
m
t

)(
n−m
k−t

)/(
n
k

)
. From the attacker’s perspective, the

difficulty in implementing a successful 51% attack is increased
by these factors.

Performance. As shown in Fig. 3, some new procedures were
added in the process of creating a new block. In fact, all these
procedures are very efficient and the overhead is completely
eliminated by Step 5) of Phase 3. More concretely, in Phase
1 the only extra step is the sign-up of mining nodes in a pool,
and in Phase 2 the only extra step is indexing mining nodes
since the other two steps are done in all known proposals. In
Phase 3, Step 1 results in some communication overhead in the
network; Step 2 computes the hash on an input that is bound
to all important information of the new block; the overhead
of Steps 3-4 primarily comes from the generation of the index
set I for assigning mining nodes; Step 5 is the critical part of
the design that tremendously contributes to efficiency as the
number k of mining nodes in Step 1 could be controlled as
small as 1. In case of k = 1, the mining node only needs to
verify the validity of selected transactions. In case of k > 1,
the number k is very likely much smaller than the total number
of nodes in the network. Moreover, the consensus algorithm
can be chosen to be rather efficient. For instance, the winning
node is chosen to be the one which has the minimum Hash
value in a pre-set time period instead of choosing the first one
that obtains a hash value below the pre-set threshold.

Cost-efficiency. The strategy of randomly choosing a subset
of mining nodes in the mining process significantly contributes
to saving computing resource as well as electricity. As men-
tioned in the previous section, the electricity consumption
of PoW in the Bitcoin blockchain and computation-intensive
consensus algorithms in other blockchains has become a
serious problem. This is one of the main motivations in this
design. We aimed to reduce the waste of resources in the
mining process while not significantly sacrifice the security.
It’s readily seen that our design indeed requires much less
computations in the mining process, which contributes to a
significant cost reduction.

To sum up, our new proposal is flexible with adjusting the
number of mining nodes, the wining rules of mining and the
structure of a block. When k < n nodes are selected for the
mining task, the efficiency is significantly improved while the
expected security level is not sacrificed if the computing power
of malicious nodes and honest nodes are uniformly distributed.
In practice, the new design makes the attacker more difficult to
control or predict the success probability of a 51% attack even

though the attacker owns more than 50% of the computing
power in the network.

IV. RELATED WORK

This section summarizes recent some known consensus
algorithms that aimed to remedy the energy-wasting issue of
PoW in the Bitcoin blockchain.

The PoS consensus algorithm was proposed primarily for
handling the energy issue of PoW. This protocol trusts that if
people have more currency involved (or at stake), they are less
likely to attack the network. Miners with more stake will more
likely be selected in the creation of new blocks. Miners in PoS
need to prove the proprietorship of the amount of currency
they possess. However, this selection method is unjust based
on the research from the richest person in the network [9].

Delegated PoS (DPoS) is an algorithm like the PoS protocol.
It varies from PoS algorithm in the aspect that in DPoS, coin
holders of the cryptocurrency system vote for delegates to
validate and process a transaction in return for transaction fees,
which is different in PoS where a stakeholder validates and
processes a transaction to earn rewards and transaction fees.
DPoS leverages the power of stakeholder approval voting to
resolve consensus issues in a fair and democratic way [10].

The PBFT algorithm does not scale, and it is mostly used in
the permissioned or permission-based consortium blockchains.
Recently, Luu et al. proposed a novel design of permissionless
blockchain with the Bazantine-like consensus [16]. The main
idea of the design is to divide a network into small chunks
known as committees. Each committee processes a disjoint
set of transactions and the whole procedure is parallelized
and the agreement condition is implemented in probabilistic
manner. Each honest process matches its agreed value with a
constraint function and checks its validity, and the solution
is accepted only if it satisfies the constraint function. All
committees perform a classic Byzantine consensus and the
final committee merges the results of all previous committees.

V. CONCLUSION

In this paper we propose a new blockchain scheme for
Bitcoin-like cryptocurrencies which require a public and trust-
less distributed network. Several new components and pro-
cedures were added in the blockchain to reduce the number
of mining nodes for creating new blocks and randomize the
selection process of such nodes. We have shown that the
proposed scheme gains advantages in flexibility, efficiency and
resource-consumption over Bitcoin-like blockchains while not
significantly sacrificing security. The proposed scheme can be
further extended to other applications of blockchain with smart
contracts.

ACKNOWLEDGEMENT

This work was supported by the research project (No.
720025) from UH-nett Vest in Norway.

REFERENCES

[1] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bit-
coin and Cryptocurrency Technologies: A Comprehensive Introduction.
Princeton University Press, 2016.

[2] M. Risius and K. Spohrer, “A blockchain research framework,” Business
& Information Systems Engineering, vol. 59, no. 6, pp. 385–409, Dec
2017.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
http://bitcoin.org/bitcoin.pdf,” 2008.

[4] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology — CRYPTO ’87, C. Pomerance,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369–378.

[5] D. Bayer, S. Haber, and W. S. Stornetta, Improving the efficiency and
reliability of digital time-stamping. New York, NY: Springer New York,
1993, pp. 329–334.

[6] J. R. Douceur, “The sybil attack,” in Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Systems, ser. IPTPS ’01. London,
UK, UK: Springer-Verlag, 2002, pp. 251–260.

[7] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security
of blockchain systems,” Future Generation Computer Systems, 2017.

[8] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems, vol.
4/3, pp. 382–401, July 1982.

[9] D. Larimer. Transactions as proof-of-stake. [Online]. Available: https:
//bravenewcoin.com/assets/Uploads/TransactionsAsProofOfStake10.pdf

[10] D. Hallberg, A. Balzini, D. L. Borella, and D. Calderoni. White
paper - proof of stake. [Online]. Available: https://steemit.com/dpos/
@dantheman/dpos-consensus-algorithm-this-missing-white-paper

[11] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design
and Implementation, ser. OSDI ’99. Berkeley, CA, USA: USENIX
Association, 1999, pp. 173–186.

[12] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
Workshop on distributed cryptocurrencies and consensus ledgers, vol.
310, 2016.

[13] A. de Vries, “Bitcoin’s growing energy problem,” Joule, vol. 2, no. 5,
pp. 801 – 805, 2018.

[14] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” Commun. ACM, vol. 61, no. 7, pp. 95–102, Jun. 2018.

[15] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” in Financial Cryptography and Data Security,
J. Grossklags and B. Preneel, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017, pp. 515–532.

[16] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 17–30.

