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Abstract—In 2008, the first commercial wave farm came online
in Portugal. As with other types of renewable energy, the elec-
tricity obtained from waves has the drawback of intermittency.
Knowing a few hours ahead how much energy waves will hold
can contribute to a better management of the electricity grid. In
this work, three types of statistical models have been used to cre-
ate up to 24-h forecasts of the zonal and meridional components of
wave energy flux (WEF) levels at three directional buoys located
off the coast in the Bay of Biscay. Each model’s performance has
been compared at a 95% confidence level with the simplest pre-
diction (persistence of levels), along with the forecasts provided
by the physics-based WAve Modeling (WAM) wave model at the
nearest grid point. The results indicate that for forecasting hori-
zons between 3 and roughly 16 h ahead, the statistical models built
on random forests (RFs) outperform the rest, including WAM and
persistence.

Index Terms—Applied physics, Bay of Biscay, fluid mechanics,
forecasting, random forests (RFs), wave energy flux (WEF).

I. INTRODUCTION

T HE LAST decade has seen increasing interest in ocean
waves as a renewable source of energy. On the one

hand, there is exponential growth in the number of prototypes
being tested at the numerous facilities recently built for that
purpose in many countries. However, in 15–20 years’ time
only a reduced number of them will successfully combine
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the necessary efficiency and economic feasibility required to
harvest energy from waves at industrial level.

Whatever the final outcome of this current competition
among different designs, all of them will have to interact with
ocean waves, and so the problem of intermittency in electricity
production will also have to be tackled. An accurate under-
standing of current and forthcoming wave energy levels may
therefore help to address this problem by developing real-time
grid management strategies [1].

Wave energy is usually expressed in terms of the wave energy
flux (WEF), a function of the significant wave height (Hws)
and the mean wave period (Tz), being stated in kilowatts per
meter of crest length (kW/m)

WEF[W/m] = ρg2(64Π)−1 Hws2Tz

∼ 0.491 Hws2Tz [kW/m]. (1)

WEF is a vectorial magnitude, so a complete prediction
of this variable involves forecasting not only its magnitude,
but also its zonal (WEFu) and meridional (WEFv) compo-
nents. Since WEF is never measured directly, it is usually
derived by combining the measurements taken of Hws, Tz,
and mean wave direction. WEF is affected by the bathymetry
of the area, and if the depth is more than half the wave-
length, it is considered that the deep-water hypothesis has been
met, and bed shoaling, partial reflection, and diffraction effects
can be ignored [2]. For a value of g = 9.81 m/s2, assuming a
seawater density of ρ ∼ 1025 kg/m3 and according to the deep-
water hypothesis, Hws and Tz combine according to (1) to
yield the magnitude of WEF [2]. Physics-based models solve
the energy balance equation for different frequencies within
the directional wave spectrum. Despite not being specifically
designed to yield WEF forecasts, WAve Modeling (WAM),
WAVEWATCH III, or similar physics-based models such as
SWAN [3]–[6] can be used to obtain ocean wave energy pre-
dictions. These models are fed with (near)-real-time data from
a wide variety of oceanic and atmospheric surveillance sources
worldwide. These physics-based models assimilate observa-
tions, and then solve the equations of the highly nonlinear
mechanisms involved, as generally described by the laws of
physics and fluid mechanics-dynamics. The output is a set of
geographical points regularly projected onto a grid that covers
the area of interest.

Another approach is to learn from the past to forecast the
future. Under this approach, the problem of forecasting is
treated as a “black box” in which a statistically based transfer
function is fitted onto historical records relating current and
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future values of WEF at a given location [7]–[10]. The meth-
ods most widely used so far have been time series and different
types of neural networks [10], with the target variable being the
WEF magnitude.

In this work, three different mathematical methods have been
used accordingly: analogs, a machine learning technique [ran-
dom forests (RFs)], and a combination of the two. RF is a
development of the classical regression trees [11] in which a
large number of trees (typically > 1000) are replicated after
each one of them has been perturbed by presenting a sample
of cases and inputs randomly selected from among the total
number available. This group of trees constitutes a forest. The
outputs obtained by each one of these perturbed trees are aver-
aged to yield the RF’s overall output. A very interesting aspect
of this technique is that it is always free from overfitting [11]–
[13]. An in-depth description of the mathematical aspects of RF
can be found in the literature [12]–[15].

Previous studies on the matter have focused on the WEF
magnitude [16], but its vectorial nature means that a com-
plete prediction of wave energy involves forecasting its zonal
and meridional components. Therefore, this study aims to fill
this gap, and forecasts have been obtained separately for the
zonal (WEFu) and meridional components (WEFv). WEFu
and WEFv have been derived from (1) by incorporating the
information held in the mean wave direction (MDIR)—another
variable measured in vectorial buoys—and by projecting the
vector’s magnitude onto a parallel (zonal) and a meridian
(meridional). WEFu zonal projections have been considered
positive/negative for incoming flows from west/east, while pos-
itive/negative WEFv meridional values correspond to flows
from south/north. The area of study is the Bay of Biscay, where
the three buoys are located (Figs. 1 and 2).

II. DATA AND METHODS

A. Data

This study has been carried out at three directional buoys
located near the northwest coast of the Spanish region of
Galicia on the Bay of Biscay (Figs. 1 and 2). Accordingly, 14
years of hourly data corresponding to the 1999–2012 period
have been used. On average, the buoys were missing values in
about 20% of the cases. The original database was divided into
two sets: hourly cases for the 1999–2005 period were used for
training the statistical models, and the 2006–2012 period was
used to test the models and draw conclusions on their perfor-
mance. This study combines several databases from different
sources:

1) hourly data from three directional buoys located off the
Spanish coast (Fig. 2);

2) European Centre for Medium-Range Weather Forecast
(ECMWF) ERA-Interim meteorological model (every
6 h);

3) ECMWF WAM model in analysis mode (every 6 h);
4) ECMWF WAM model in prognostic mode (every 12 h).
An initial preprocessing stage was needed for each buoy to

establish a single coherent structure following the same time-
line for the data from all the above databases. The total number
of hourly cases present for the different buoys ranges between

Fig. 1. Area of study. Bay of Biscay.

Fig. 2. Directional buoys used for this study and nearest ECMWF grid points.

approximately 7000 and 9000. The prevailing direction of the
WEF at the three buoys is northwest (Fig. 3), with average
values ranging from 15 to 24 kw/m for the 1999–2012 period.

B. Methodology

1) Extended EOF: An extended empirical orthogonal func-
tion (ExtEOF) is a development of the classical EOF, also
known in other scientific fields as principal component anal-
ysis. ExtEOFs are usually used with variables with a strong
time autocorrelation. ExtEOFs are used in the field of wave
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Fig. 3. WEF rose at buoy #1, Villarino Sisargas.

energy forecasting [16], [17], as well as in many other geophys-
ical studies [18]–[25]. To calculate ExtEOFs, the realizations
of the same variable several steps back in time are in them-
selves considered as variables. When applied to a set of grid
points throughout an area of interest, ExtEOFs are expected to
capture and represent the most relevant features of the vari-
able being analyzed for that time and space window. Using
scores from ExtEOFs significantly reduces the number of vari-
ables, while retaining most of the variability. Since ExtEOFs
are orthonormal, using them as inputs avoids the problem of
multicollinearity, to which several techniques, such as linear
regression, are very sensitive.

In this work, ExtEOFs have been calculated for the ECMWF
atmospheric and oceanic variables corresponding to the 38 grid
points in the area of study (Fig. 1) and with three 6-h steps back
in time (18 h). The atmospheric and oceanic variables involved
were as follows: sea level pressure (MSL), zonal wind speed
at 10 m above the sea surface (U10), meridional wind speed
(V10), the magnitude of the flux, derived from (1), and its zonal
and meridional components. The final number of ExtEOFs
retained was 21, and they were selected under the condition of
retaining at least 90% of the original variance. This allowed a
dramatic reduction in the number of variables used, while still
holding most of the information on the atmosphere/sea state in
the Bay of Biscay.

2) Building the Models: A statistical modeling approach
has been used at the three buoys to build a transfer func-
tion to predict the WEFu and WEFv values k hours ahead
(k = 1, . . . , 24) with the following two types of inputs:

a) the zonal (WEFu) and meridional (WEFv) components of
the WEF observed at the three buoys at time t;

b) the ExtEOFs that hold the highest fractions of variance
(ExtEOFs, see below) describing the atmosphere/sea state
from t to t− 18 hours back in the whole Bay of Biscay
(38 grid points, Fig. 1).

The general structure of the models built can be summa-
rized in

WEFu_buoy[t+ k]

= F1(extEOF1[t, . . . , t− 18], . . . ,

extEOF21[t, . . . , t− 18],WEFu_buoy[t]) (2)

WEFv_buoy[t+ k]

= F2(extEOF1[t, . . . , t− 18], . . . ,

extEOF21[t, . . . , t− 18],WEFv_buoy[t]) (3)

where F1 and F2 represent the general transfer functions that
were fitted, and k = (1, . . . , 24) is the number of hours ahead:
Accordingly, three types of statistical models have been built
to forecast zonal and meridional WEF levels at the three buoys
analyzed: 1) the analog technique; 2) the analog technique fol-
lowed by an RF regression stage; and finally, 3) RFs. The reason
for using these techniques is that the mechanisms involved in
the evolution of WEF a few hours ahead are known to be highly
nonlinear, and these algorithms, particularly RFs, are capable of
successfully capturing nonlinear relationships between a set of
inputs and outputs.

The analog technique is perhaps the simplest one. It is
based on the selection of similar historical states of the
sea/atmosphere system (analog) from a historical database.
After standardization, similar cases to those with the smallest
Euclidean distances to the current case are identified. The ratio-
nale here is that the evolution observed in those past analogs
can now be expected to be similar to the current case. This
model will be denoted here as “analogs.” A further development
is to add a second stage of regression based on RF, in which
a transfer function connecting WEF values observed from t
to t− 18 hours and forthcoming WEF values at time t+ k,
k = (1, 2, . . . , 24) is fitted only on past analogs. This transfer
function will now be fed with current observations to yield pre-
dictions up to 24 h ahead. This model will be referred to here
as “analogs + RF.”

The third technique considered was the straightforward use
of RFs with all the historical records available, and not only
the most similar ones. Here, this approach will be called “RF.”
The inputs used to feed the models were the ExtEOFs calcu-
lated for the whole area (with a maximum lag of 18 h back),
corresponding to the sea (ECMWF WAM) and atmospheric
variables (ECMWF ERA-Interim), plus observed values from
buoys at time t. The three approaches were applied to forecast
the zonal and meridional values of the wave energy flux (WEFu
and WEFv) at the three buoys up to 24 h ahead. As the num-
ber of test cases at each buoy was 8894 (#1), 6957 (#2), and
8802 (#3), respectively, the three approaches involved build-
ing 1 183 344 “analogs”-type models plus 1 183 344 “analogs
+ RF”-type models, and 144 “RF”-type models. This means
that in total 2 366 832 models have been built and tested in this
study.

3) Evaluation and Intercomparison of Models: For model
performance intercomparison purposes, some measure of error
is customarily adopted [7]–[10], with the most widely used
indicator being the mean absolute log difference times 100.
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However, in this study, the zonal and meridional components
of the WEF can have negative values, so this indicator was not
an option due to its logarithmic nature.

Therefore, the criterion adopted for the model intercompar-
ison of WEF forecasts was the mean absolute error. This is
defined as the average value of [Abs(forecast-observed)]. To
correctly identify the convergence of forecasting horizons, con-
fidence intervals of this indicator have been calculated to assess
differences in errors at a 95% confidence level. The perfor-
mance of the different models has been compared with a) the
simplest model (persistence of levels); and b) the forecasts
yielded by the physics-based WAM model at the nearest grid
points (Fig. 2). The reason is that any modeling effort should
yield better results than both of these. The identification of pref-
erential forecasting horizons for one model or another will be
the objective of this intercomparison.

4) Calculations: All the calculations have been carried out
within the framework of R [26]. The main packages used were:
“randomForest” [27], “FactoMineR” for EOF calculation [28],
and “sp,” “maps,” and “rgdal” for mapping data [29], [30], [31].
In the “analogs” model, the predictions are calculated as the
average of the past analogs observed. After some tests at the
initial stages of this study, a figure of 50 was identified as the
optimum number of similar records used to calculate that aver-
age, and the same value was also applied for the “analogs +
RF” approach. The basic implementation of RF is available in
R [27], but its application both after the “analogs” stage and in
standalone mode involved the extensive development of spe-
cific scripts. Under these approaches, hourly forecasts were
calculated for both the zonal and meridional components of
WEF at the three buoys, as well as for forecasting horizons
ranging from 1 to 24 h. These predictions were compared with
the forecasts available from ECMWF WAM, as well as persis-
tence. Finally, 95% confidence boundaries were calculated for
all the statistical performance indicators. It is important to stress
that over 2× 106 models were built, tested, and evaluated.

III. RESULTS AND DISCUSSION

A. Results

The main findings of the extensive analysis provided by
the intercomparison of this large number of models can be
summarized as follows.

1) Models tend to behave similarly at the three locations,
so the results will be presented in an aggregated man-
ner (average errors from all buoys), as shown in Fig. 4
for zonal (WEFu) and Fig. 5 for meridional (WEFv)
forecasts.

2) Quite the opposite to their behavior when applied to
other geophysical variables [19], analogs perform poorly.
“Analogs + RF” performs better, and among the statisti-
cal models “RF” outperforms all the others.

3) The WAM model’s error is higher for the zonal compo-
nent than for the prediction of the meridional WEF.

4) RF errors, however, tend to be more balanced in all
directions.

5) Until 2–3 h ahead, persistence is the best model.
6) In all cases, the WAM model’s error remains constant

at a 95% confidence level for 12- and 24-h forecasts,

Fig. 4. Mean absolute error for WEFu forecasts up to 24 h ahead. Average for
the three buoys.

Fig. 5. Mean absolute error for WEFv forecasts up to 24 h ahead. Average for
the three buoys.

while the different statistical models increase their error
with the forecasting horizon. This difference in error
behavior between statistical and physics-based models
has also been reported in the literature [7]–[9] for different
environments and locations. Assuming a constant error,
and with the aim of clearly identifying the convergence
point with the statistical models in Figs. 4 and 5, 95%
confidence boundaries of the WAM error have been inter-
polated/extrapolated.

7) For zonal prediction (Fig. 4), the following preferential
windows emerge for each type of model:

a) from 1- to 2–3-h forecasts, persistence is the best
option;

b) from 3 to 19–20 h, “RF” outperforms all the others,
and between 8 and 20 h, “RF” and “analogs + RF”
record a similar performance;
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Fig. 6. Error rose for the “RF” model’s 12-h forecasts at buoy #1 (Villarino-
Sisargas).

c) above 20 h, WAM, “analogs,” “analogs + RF,” and
“RF” record a similar performance.

8) For meridional prediction (Fig. 5), the preferential win-
dows are as follows:

a) again, from 1- to 2–3-h forecasts, persistence is the
best option;

b) from 3 to 11 h, “RF” outperforms all the others;
c) above 12 h, WAM outperforms all the others.

When WEFu and WEFv are analyzed jointly, the error roses
indicate that RF errors (magnitude + direction) tend to be
more homogeneously distributed than in the case of WAM,
whose error rose stretches westwards. To illustrate this com-
mon behavior at the three buoys, error roses corresponding to
buoy #1 (Villarino-Sisargas) are shown for “RF” (Fig. 6) and
WAM (Fig. 7).

B. Discussion

The literature suggests that a complex bathymetry may ren-
der physics-based models less accurate at short horizons, and
more specifically in shallow coastal sites, while statistical
models are reported to work better at short horizons [7], [8],
[9]. However, at least one of the buoys in this study (buoy #1,
−1800 m) is not located in shallow waters. In these deep-water
cases, the literature indicates that the results seem to depend
on local conditions. Along these lines, it is worth mention-
ing the case of a buoy located in deep waters (Yucatan Basin,
19.874′ N, 85.06′ W), where the statistical models are reported
to outperform WAM forecasts up to a convergence point of
9–12 h [9]. An analysis of the Yucatan Basin suggests that
the combination of a complex bathymetry with an undersea
mountain range and the presence of shorelines at mid-distances
in almost all directions can generate effects that are difficult
to simulate accurately, and to a certain extent deteriorates the
WAM’s prognostic capabilities.

With the grid size it uses here, the WAM model makes the
forecasts considering the following depths for the [1.125◦ ×
1.125◦] pixels corresponding to three nearest grid points:
−990 m (buoy #1), −223 m (buoy #2), and −186 m (buoy

Fig. 7. Error rose for the WAM model’s 12-h forecasts at buoy #1 (Villarino-
Sisargas).

#3). However, the effective depths at the buoys are as follows:
−386 m (buoy #1), −1800 m (buoy #2), and −450 m (buoy
#3). Fig. 8 shows that the three buoys are located at places
where bathymetry records a steep gradient, while the WAM
model considers a flat sea bottom for each pixel of the grid with
constant depths.

This means that with the resolution it uses, the WAM is prob-
ably unable to successfully simulate the effects associated to
the complex bathymetry below the buoys. Additionally, coastal
effects may not be captured accurately since significant pro-
portions of the cells are land and not sea. Fig. 8 also suggests
that the bathymetry of the area can originate a channeling effect
along the east/west direction. This can also explain why the
WAM error is almost twice as high for the zonal component
than for the meridional one, while the error in the statistical
models is roughly the same for both components and is not
affected by all these local factors.

IV. CONCLUSION AND FUTURE OUTLOOK

A. Conclusions

In recent years, wave energy farms have been attracting
increasing interest. A shortcoming associated to this source of
energy is that intermittency might cause grid management prob-
lems. For this reason, accurate knowledge of how much energy
ocean waves will hold a few hours ahead is a major issue.

This work has presented a statistical approach based on dif-
ferent models. Among them, “RF” performs best. “RF” is a
machine learning algorithm that from a historical database can
capture, under a black box approach, the major patterns regard-
ing the evolution of WEF in the timescale of hours. “RF” also
outperforms readily available persistence and WAM models for
different forecasting horizons.

It is important to stress that due to its vectorial nature, an
accurate prediction of the WEF vector involves forecasting both
components: zonal (WEFu) and meridional (WEFv). As the
“RF” model’s preferential forecasting horizons are different
for the two components (WEFu [3–20 h], WEFv [3–11 h]), a
reasonable combined preferential forecasting horizon for WEF
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Fig. 8. WAM cells and bathymetry of the area studied.

would be between 3 and 16 h. “RF” also allows identifying the
most influential variables involved in the forecasts. For predic-
tions up to 12 h ahead, the most relevant variable is the observed
value of WEFu, or WEFv at time t, followed by two groups of
variables: the ExtEOFs of WEFu and WEFv calculated for the
area, and the ExtEOFs corresponding to MSL, U10, and V10.
Beyond 12 h ahead, the same inputs are again the most influen-
tial, but the observed value of WEFu or WEFv loses relevance,
and its impact is smaller than the two groups of oceanic and
atmospheric ExtEOFs.

This indicates that RF models take advantage of the inherent
predictability associated to the strong autocorrelation present
in the local WEF values observed. The additional prognostic
capabilities that “RF” models provide, when compared with
persistence, are due to the information that both atmospheric
and sea state variables incorporate into the “RF” model. This
information is held by the most significant ExtEOFs retained,
and describes the major features corresponding to atmospheric
and oceanic variability in the Bay of Biscay in a time window
ranging from time t to time t− 18 hours. The models obtained
for this work are useful locally, but the methodology can be
readily extrapolated to other environments.

The buoys in this study are located near the coast, between
17 and 36 km offshore. These distances represent the maximum
boundaries from the coast that could be expected for any wave
farm. A common aspect of ocean wave farms is that they
are not located in open-sea areas, but at distances from the
coast that are similar to or shorter than those shown in this
study. The results shown here can hence be useful for other
tentative near-shore locations. It is in these areas where WAM
error seems to deteriorate heavily, and statistical models work
better. However, this work indicates that neither of the WEF
components is affected by all these factors in the same way,
which is another good reason to take a vectorial approach for
forecasting purposes.

Although a few studies have focused on forecasting WEF
magnitudes using statistical techniques, to the best of our
knowledge a vectorial approach like the one shown here has
never been applied. Likewise, the use of a machine learn-
ing technique like “RF” has never been reported for statistical
WEFu and/or WEFv forecasting purposes. Nevertheless, the
relatively small number of cases reported in the literature sug-
gests that more studies are needed, whereby a comparison with

other cases worldwide may contribute to a better understanding
of certain effects, such as the roles of bathymetry and distance
to the coast.

B. Future Outlook

Further research is currently being carried out along these
lines by the authors of this study, albeit for other environ-
ments, with the aim being to expand the database of similar
cases, where zonal and meridional WEF operational forecasts
might be of interest. Furthermore, gaining a better understand-
ing of the factors that affect WAM’s performance (complex
bathymetry, grid resolution, and coastal effects, among others)
is an issue of interest for a clearer delimitation of the forecast-
ing horizons and general operational conditions in which one
or other should be used. This will allow a better understand-
ing of the applicability of these techniques for operational WEF
forecasting purposes.

Considering the high number of models tested and cases used
in this study, the conclusions may be considered sound enough
for the three buoys analyzed here. Unfortunately, a database
as large as the one used here is not always available, which
currently represents another limitation for similar studies.

ACKNOWLEDGMENT

ECMWF ERA-Interim data used in this study have been
obtained from the ECMWF-MARS Data Server thanks to
agreements with ECMWF and AEMET. The authors would like
to thank the Spanish Port Authorities (Puertos del Estado) for
kindly providing data for this study.

REFERENCES

[1] M. Esteban and D. Leary, “Current developments and future prospects
of offshore wind and ocean energy,” Appl. Energy, vol. 90, pp. 128–136,
2012.

[2] B. Multon, Marine Renewable Energy Handbook, New York, NY, USA:
Wiley, 2012, p. 112

[3] The WAMDI Group “The WAM model—A third generation ocean wave
prediction model,” J. Phys. Oceanogr., vol. 18, pp. 1775–1810, 1988.

[4] P. A. E. Jansen, “Progress in ocean wave forecast,” J. Comput. Phys.,
vol. 227, pp. 3572–3594, 2007.

[5] J. R. Bidlot, D. J. Holmes, P. A. Wittmann, R. Lalbeharry, and H. S. Chen,
“Inter comparison of the performance of operational ocean wave forecast
systems with buoy data,” Weather Forecast, vol. 17, pp. 287–310, 2002.

[6] N. Booij, R. C. Ris, and L. H. Holthuijsen, “A third-generation model for
coastal regions. Part 1: Model description and validation,” J. Geophys.
Res., vol. 104, pp. 7649–7666, 1999.

[7] G. Reikard, “Integrating wave energy into the power grid: Simulation and
forecast,” Ocean Eng., vol. 73, pp. 168–178, 2013.

[8] G. Reikard, P. Pinson, and J. R. Bidlot, “Forecast ocean wave energy:
The ECMWF wave model and time series methods,” Ocean Eng., vol. 38,
pp. 1089–1099, 2011.

[9] G. Reikard and W. E. Rogers, “Forecast ocean waves: Comparing a
physics-based model with statistical models,” Coast. Eng., vol. 58,
pp. 409–416, 2011.

[10] S. Hadadpour, A. Etemad-Shahidi, and B. Kamranzad, “Wave energy
forecasting using artificial neural networks in the Caspian Sea,” Proc.
Inst. Civil Eng., Maritime Eng., 2014, vol. 167, no. 1, pp. 42–52.

[11] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001.
[12] U. Grömping, “Variable importance assessment in regression: Linear

regression versus random forest,” Amer. Stat., vol. 63, pp. 308–319, 2009.
[13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning, Data Mining, Inference, and Prediction, New York, NY, USA:
Springer-Verlag, 2001, p. 48.



IBARRA-BERASTEGI et al.: WAVE ENERGY FORECASTING AT THREE COASTAL BUOYS IN THE BAY OF BISCAY 929

[14] A. Liaw and M. Wiener, “Classification and regression by randomforest,”
R News., vol. 2, no. 3, pp. 18–22, 2002.

[15] D. S. Siroky, “Navigating random forests and related advances in algo-
rithmic model,” Stat. Surv., vol. 3, pp. 147–163, 2009.

[16] G. Ibarra-Berastegi, J. Saenz, G. Esnaola, A. Ezcurra, and A. Ulazia,
“Short-term forecasting of the wave energy flux: Analogues, random
forests, and physics-based models,” Ocean Eng., vol. 104, pp. 530–539,
2015.

[17] A. D. Rao, M. Sinha, and S. Basu, “Bay of Bengal wave forecast
based on genetic algorithm: A comparison of univariate and multivariate
approaches,” Appl. Math. Model., vol. 37, pp. 4232–4244, 2013.

[18] A. Hannachi, I. T. Jolliffe, and D. B. Stephenson, “Empirical orthogonal
functions and related techniques in atmospheric science: A review,” Int.
J. Climatol., vol. 27, pp. 1119–1152, 2007.

[19] G. Ibarra-Berastegi et al., “Downscaling of surface moisture flux and
precipitation in the Ebro Valley (Spain) using analogues and analogues
followed by random forests and multiple linear regression,” Hydrol. Earth
Syst. Sci., vol. 15, no. 6, pp. 1895–1907, 2011.

[20] J.-M. Chen and P. A. Harr, “Interpretation of extended empirical orthogo-
nal function (EEOF) analysis,” Monthly Weather Rev., vol. 121, pp. 2631–
2636, 1993.

[21] K. H. Seo and Y. Xue, “MJO-related oceanic kelvin waves and the ENSO
cycle: A study with the NCEP global ocean data assimilation system,”
Geophys. Res. Lett., vol. 32, 2005, L07712.

[22] F. T. Tangang, B. Y. Tang, A. H. Monahan, and W. W. Hsieh, “Forecast
ENSO events: A neural network extended EOF approach,” J. Climatol.,
vol. 11, no. 1, pp. 29–41, 1998.

[23] B. C. Weare and J. C. Nasstrom, “Examples of extended empirical orthog-
onal function analyses,” Monthly Weather Rev., vol. 110, pp. 481–485,
1982.

[24] J. Peters, B. De Baets, N. E. C. Verhoest, R. Samson, S. Degroeve, P. De
Becker, and W. Huybrechts, “Random forests as a tool for ecohydrologi-
cal distribution modeling,” Ecol. Model., pp. 304–318, 2007.

[25] K. Fraedrich, J. L. McBride, W. M. Frank, and R. Wang, “Extended EOF
analysis of tropical disturbances: TOGA COARE,” J. Atmos. Sci., vol. 54,
pp. 2363–2372, 1997.

[26] R Development Core Team “R: A language and environment for sta-
tistical computing,” R Found. Stat. Comput., Vienna, Austria, 2012,
http://www.R-project.org/ ISBN 3-900051-07-0.

[27] F. Husson, J. Josse, S. Le, and J. Mazet, “FactoMineR: Multivariate
exploratory data analysis and data mining with R,” R package version
1.25, 2013, http://CRAN.R-project.org/package=FactoMineR

[28] R. S. Bivand, E. Pebesma, and V. Gomez-Rubio, Applied Spatial Data
Analysis with R, 2nd ed., New York, NY, USA: Springer-Verlag, 2013, p.
39 [Online]. Available: http://www.asdar-book.org/

[29] R. Bivand, T. Keitt, and B. Rowlingson, “rgdal: Bindings for the
Geospatial Data Abstraction Library,” R package version 0.8-11, 2013,
[Online]. Available: http://CRAN.R-project.org/package=rgdal

[30] E. J. Pebesma and R. S. Bivand, “Classes and methods for spa-
tial data in R,” R News, vol. 5, no. 2, 2005, [Online]. Available:
http://cran.r-project.org/doc/Rnews/

[31] G. Ibarra-Berastegi, J. Saénz, G. Esnaola, A. Ezcurra, and A. Ulazia,
“Short-term forecasting of zonal and meridional wave energy flux in the
Bay of Biscay using random forests,” in Proc. IEEE OCEANS Conf.,
2015, DOI: 10.1109/OCEANS-Genova.2015.7271404

[32] Y. Fukutomi and T. Yasunari, “Structure and characteristics of
submonthly-scale waves along the Indian Ocean ITCZ,” Clim. Dyn.,
vol. 40, no. 7–8, pp. 1819–1839, 2013.

Gabriel Ibarra-Berastegi received the Ph.D. degree
in engineering.

Currently, he is an Associate Professor at the
Faculty of Engineering, University of the Basque
Country (UPV/EHU), Bilbao, Spain. He has a long
experience in geophysical and environmental fluids.
His current research focus is ocean wave energy. He
coordinates the activities of “EOLO” research group.

Jon Sáenz received the B.Sc. degree in physics of the
atmosphere from Complutense University, Madrid,
Spain, in 1986 and the Ph.D. degree in physics from
the University of the Basque Country (UPV/EHU),
Bilbao, Spain.

Currently, he teaches physics at the University
of the Basque Country. His main research inter-
ests are in the field of atmospheric physics, either
using mesoscale atmospheric models or analyzing cli-
mate data, including several processes involved in
the atmosphere–ocean coupling. Climate data derived

from observations (surface, satellite), global or regional models, and reanalyses
are his main source of research material.

Ganix Esnaola received the Ph.D. degree in physics.
He is an Assistant Professor at the University

of the Basque Country (UPV/EHU), San Sebastian-
Donostia, Spain. He specializes in fluid mechanics
and geophysical fluid dynamics. His research activi-
ties include air–sea interaction problems, ocean mod-
eling, reconstruction of missing satellite data, and
data-assimilation techniques.

Agustin Ezcurra received the Ph.D. degree in
physics.

He works as a teacher and researcher at the
University of the Basque Country, (UPV/EHU),
Bilboa, Spain. He has a long experience in geophysi-
cal fluids and environmental issues.

Dr. Alain Ulazia graduated in astrophysics from
the University of La Laguna, San Cristóbal de La
Laguna, Spain, in 1997 and received the Ph.D.
degree in logic and philosophy of science from
the University of the Basque Country (UPV/EHU),
Bilbao, Spain.

He currently works as a teacher and researcher at
the University of the Basque Country.

Naiara Rojo received the Ph.D. degree in
engineering.

She is an Assistant Professor at the University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz,
Spain. She specializes in the treatment of polluted
gaseous streams by biofiltration.

Gorka Gallastegui received the Ph.D. degree in
engineering.

He is an Assistant Professor at the University of
the Basque Country (UPV/EHU), Vitoria-Gasteiz,
Spain. He specializes in environmental engineering.
His main research activity is related to air-pollution
control and biotreatment of contaminated waste gas
streams.


