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Abstract—Thermal comfort is an important aspect of home 
and office environments for maintaining proper human health 
and wellbeing. This paper presents the results of data analysis 
techniques employed on measured data of building sensors. The 
study underscores the importance of data pre-processing in data 
analysis. The data analysis reveals hidden characteristics of 
room temperature evolution which are influenced by different 
physical parameters recorded by sensors installed in a room. 
This influence is made clearer when seasonal data and different 
data pre-processing methods are considered. Space heating and 
cooling accounts for a significant portion of a building’s energy 
consumption. Thus, deep analysis of room temperature data 
could prove a useful parameter to unlock sustainable energy 
efficiency measures using future-oriented technologies and 
solutions, such as Information and Communication Technology 
(ICT), Internet of Things (IoT), blockchain with smart 
contracts. 
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I. INTRODUCTION  
Today, the earth’s climate is changing faster than any time 

in the history of human civilization, which is unequivocally 
the result of human activities [1], [2], particularly the emis-
sions of greenhouse gases (GHG) when consuming energy in 
the form of fossil fuels. The negative impacts of climate 
change are being witnessed across the globe and in many 
sectors critical for the proper functioning of society – such as 
human health, agriculture, water supply, transportation, en-
ergy ecosystems, etc. The European Union (EU) is the third 
largest GHG emitter in the world after China and the US [3]. 
As a result, in 2009 the EU adopted a legislation to cut GHG 
emissions by 20% compared to 1990 levels and increase 
energy efficiency by 20% [4]. Later in 2014 under the Paris 
Agreement, the EU further built upon the 2009 legislation and 
targeted a 40% reduction in GHG by 2030 (compared to 1990 
levels) and at least 27% increase in energy efficiency [5]. 
More recently in 2018, in the Clean Energy for all Europeans 
package, the energy efficiency target has been updated to 
32.5% for 2030 [6]. As part of the package a revised Energy 
Performance of Buildings Directive (EPBD-2018/844/EU) 
entered into force. The directive aimed at accelerating the 
cost-effective renovating of existing buildings, with decar-
bonization in focus [7].  

The building sector encompasses a diverse set of end-use 
activities, which have different energy implications. In an EU 
context, buildings are responsible for approximately 40% of 
energy consumption and 36% of CO2 emissions [6], [7]. This 
is very unsurprising as we spend most of our lives in either at 

home or in an office with a controlled and comfortable 
environment. Globally on average, space heating and cooling 
accounts for a significant portion of a building’s energy 
consumption, at about 42% [8]. While at the EU level, the 
energy consumed by space heating and cooling (space condi-
tioning) forms a clear majority from the energy consumed by 
buildings, as it can be seen in Fig. 1 [9].  

Over the past decade, various studies have addressed the 
influencing role of indoor temperature on the energy con-
sumption due to the utilization of space conditioning systems. 
Research in [10] discusses waste of energy due to unnecessary 
space conditioning resulting from lack of real time infor-
mation regarding the thermal comfort levels and occupancy. 
Another study [11] reports that building climate control in 
urbanized areas contributes 50–70% of the overall energy 
usage in residential and commercial buildings and proposes a 
predictive control model for building energy reduction and 
temperature regulation. To improve energy efficiency, the 
study in [12] is focused on forecasting the indoor room 
temperature through the functioning of the HVAC system for 
space conditioning which consumes large amounts of energy. 
Results of research in [13] report a 37% increase in energy 
efficiency achieved with better temperature control inside a 
room for a split AC system. 

 
Fig. 1. EU building energy consumption components for residential (top) 
and commercial buildings (bottom). The publication of this paper was supported by the European Regional 

Development Fund 
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Thus, there is a direct relation between space conditioning 
and a building’s energy consumption. The evolution of the 
indoor room temperature is influenced mainly by three 
factors: local weather conditions, human activities and the 
operation of the HVAC system. The purpose of our study is to 
analyze the information contained in these three factors by 
implementing data analysis techniques to unlock energy 
reduction potential at a reasonable cost and with a maturity 
compatible with international and regional commitments. This 
paper presents analysis of recorded data from different sensors 
present in a smart building.  

The aim of this study is to achieve a better understanding 
of how the information contained by the various sensors 
influences the indoor room temperature. The results from the 
data analysis could be used to develop a better energy predic-
tion model for buildings and explore possibilities of imple-
menting IoT and blockchain based automated solutions to 
manage flexible building resources keeping thermal comfort 
and energy consumption in mind.  

In the past decade, numerous future-oriented studies have 
been conducted, incorporating IoT and blockchain for energy 
efficient buildings. Researchers in [14] propose a model of a 
smart district, utilizing ICT, IoT and blockchain technology to 
achieve efficient energy management through home automa-
tion. The study [14] also suggests that smart homes and smart 
users will be fundamental elements in future cities. Other 
studies [15], [16] have presented case studies on the imple-
mentation of IoT and blockchain based solutions for smart 
homes analyzing data security, data flow and the implementa-
tion of smart contracts. Investigations in [15], [17], [18] have 
determined that presently data security, device security and 
privacy issues plague IoT mass adoption, especially in the 
building sector. They have concluded that blockchain based 
solutions for IoT device communication increases security 
and privacy. Thus, blockchain combined with IoT solutions 
for smart homes with smart contracts designed to ensure a 
balance between thermal comfort and energy consumption 
utilizing flexible resources proves to be a promising trend in 
the future. In pursuit of energy consumption efficiency, it is 
imperative to consider the needs of the occupants first, 
because buildings are constructed to serve people. 

This paper also presents future insights in building energy 
management. It underscores the trend of more complete and 
precise data analytics, utilization of IoT and more recently 
blockchain technology for building energy management. In 
the EU, over 75% of the buildings are considered as energy 
inefficient [7]. Therefore, upgrading existing buildings with 
new technology solutions has the potential of reducing the 
EU’s total energy consumption by 5–6% and lowering 
CO2 emissions by about 5% [7], which will assist in conform-
ing to the ambitious EU policy targets.  

The paper is structured as follows. Section II discusses the 
general background of the presented work and gives a brief 
description of the experimental setup. Section III describes the 
approach and the data analysis methods used for the study. 
Section IV analyzes the results obtained from the data 
analysis. Section V presents the future trends regarding 
temperature measurement and room temperature control 
implementation in sustainable energy management along with 
blockchain and IoT based applications. Section VI presents 
key conclusions from our study. Section VII describes the 
future direction of the study and perspectives. 

II. BACKGROUND AND EXPERIMENTAL SETUP 
As stated earlier in the paper, the building sector in the EU 

contributes a significant percentage of the energy consump-
tion and CO2 emissions [6], [7]. Over 50% of the energy 
consumed by the buildings is utilized for space conditioning 
(climate control) to satisfy human thermal comfort needs. 
Studies in [10]–[13] have analyzed the role indoor room 
temperature plays in the energy consumption and its link to 
space conditioning systems. 

The study in [19] of building temperatures and Building 
Management Systems (BMS) states that a 1℃ increase in 
temperature set point results in a 8-10% increase in energy 
consumption; similarly, a 1℃ reduction in cooling results in a 
4–5% increase in energy usage. A good space conditioning 
strategy can result in a 30% reduction in energy costs [19]. 
There are also relations between indoor room temperature and 
human productivity, as indicated in [20], [21]. Measures to 
improve indoor temperature control and increase ventilation 
rates would provide an annual economic benefit as high as 
$700 per person with benefits-cost ratio of 80 [21].  

Building energy consumption is dominated by space con-
ditioning, which is a function of room temperature. Under-
standing the evolution of the indoor temperature will give us 
greater insight into how we consume our energy. Using the 
information gained from the results of the data analysis along 
with future-oriented technologies like the Internet of Things 
(IoT) [22]–[24] and Blockchain [25], [26] could help us 
unlock energy reduction potential for buildings to meet our 
energy efficiency goals [27]. 

Our study was conducted in partnership with the ‘Mesure 
de l’Efficacité Énergétique des Bâtiments et de leurs 
Systèmes’ (Measurement of the Energy Efficiency of Build-
ings and their Systems) Department of CEREMA [28], which 
is a public sector company operating in France. In our analy-
sis, we utilized the data (recorded from 2014-2017) of a smart 
building within CEREMA’s facility located in Angers in the 
French mainland region of Pays de la Loire. Data here was 
obtained from the measurements recorded by a network of 
sensors located in an office room and a local weather station 
within CEREMA’s facility in open space. Fig. 2 shows how 
some of the different sensors were installed in the room and 
Fig. 3 presents the local weather station. 

 
Fig. 2. Installed room sensors.   
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Fig. 3. Local weather station.  

The different sensors available in the selected room for our 
analysis were a temperature sensor, a light sensor, a presence 
sensor, a power consumption sensor, two window activity 
(opening or closing) sensors, the radiator and the HVAC 
power consumption sensors. The local weather station rec-
orded information pertaining to the solar radiation, outdoor 
temperature, outdoor pressure and relative humidity experi-
enced.  

The key indicator in our analysis was the temperature 
observed in the room. According to numerous extensive 
studies, space conditioning as a significant contributor to a 
building’s energy consumption. 

III. ANALYTICAL APPROACH 
Raw data from the various sensors used in our study were 

aggregated, pre-processed and synchronized to 15-minute 
periods to obtain useable time-series sensor data. Data pre-
processing here entailed the removal of duplicates, missing 
data and overall smoothening of data, while synchronization 
meant that the recorded data from the sensors were stored at 
the same rate. By performing aggregation, pre-processing and 
synchronization, a database containing sensor data was 
created. R software was used in all our analyses, which was 
an ideal platform for handling large amounts of data and had 
a range of different numerical and statistical analysis tools. 
Data analysis of the sensor information was done using two 
main methods: Cluster analysis and ANOVA analysis. 

Cluster Analysis – It is a data analysis method that groups 
similar objects together. Cluster analysis was performed on 
indoor temperature data. In our data analysis, days (referred to 
as objects) with similar indoor temperature profiles were 
grouped together. Cluster analysis consists of three important 
steps: data pre-processing, distance calculation and the clus-
tering algorithm. We used three data pre-processing (nor-
malization) methods: No Normalization, Mean Normalization 
and Mean and Standard Deviation Normalization; two 
distance methods: Euclidean distance and Dynamic Time 
Wrapping (DTW) distance method. Finally, two clustering 
algorithms: WARD.D2 and K-Means clustering algorithm 
were used.  

As a result, 12 different clustering combinations (3 * 2 * 2 
= 12) were utilized. The reason why we used 12 different 
clustering combinations was to extract as much information 
from the data as possible. This was an important aspect of our 
study. Information in the data can be hidden and by using 
different data pre-processing methods, distance methods and 
clustering algorithms, this concealed information could be 
unearthed from the data. 

Variation of Information – From the 12 different cluster-
ing combinations, we narrowed down our selection based on 
the Variation of Information (VI) index [29]. The VI index is 
a unitless number that quantifies how much information is lost 
or gained when we move from one clustering combination to 
another. Using this function, we could determine which of the 
three steps of the cluster analysis (data pre-processing meth-
ods, distance methods or the clustering algorithms) contrib-
utes most to extract new information from the data.  

ANOVA Analysis – ANOVA or Analysis Of Variance 
[30], [31] is a data analysis tool used in statistics to determine 
if there is a statistical influence on a data set. Results from  
the cluster analysis (performed using indoor temperature  
data) were used along with different sensor data to perform 
ANOVA analysis. This was done to determine whether a 
relationship exists between the indoor room temperature 
clusters (results obtained from cluster analysis) and the other 
sensors like outdoor temperature, humidity, presence sensor 
and so on. Using this statistical tool it enabled us to establish 
whether or not the formation of the indoor room temperature 
clusters were influenced by the different sensors. 

This was determined using the ‘p-value’ or ‘probability 
value’ obtained which is the result of the ANOVA analysis for 
each sensor. The p-value (unitless number) was compared 
with the ‘Significance level (α)’. In our case, we used an α of 
0.05 (5%). So, if the p-value obtained is less than α, there is a 
5% risk of concluding that an influence exists between the 
sensor information and the way the indoor temperature pro-
files are clustered when there is no actual influence between 
them. Similarly, the opposite case is true when the p-value is 
more than α. In simple terms, α is the probability of error that 
our conclusion (whether an influence exists or not) could be 
wrong.  

Data visualization codes to express and interpret the 
results more clearly were also developed on R software. 
Various other functions and tools were used to complement 
the data analysis. 

IV. EXPERIMENTAL RESULTS 
Cluster center plots for each of the three data pre-pro-

cessing (normalization) methods were plotted using the DTW 
distance method and the WARD.D2 clustering algorithm, as 
shown in Figs. 4, 5, and 6. It can be concluded that the data 
pre-processing methods play a key role in the shape of the 
clustering results. 

In Figs. 4, 5, and 6, each line is a cluster center for a 
particular cluster with the x-axis representing the duration of 
a day and the y-axis representing the temperature (℃). No 
Normalization cluster center plot (Fig. 4) shows that each of 
the cluster centers has a similar profile and is clearly layered 
according to the temperature. This suggests that all the objects, 
i.e. the daily indoor room temperatures, have a similar profile 
and are clustered according to the temperature.  

Authorized licensed use limited to: Carleton University. Downloaded on June 30,2020 at 06:23:37 UTC from IEEE Xplore.  Restrictions apply. 



 
Fig. 4. No Normalization cluster centers.   

However, the cluster center plots for both Mean Normali-
zation in Fig. 5 and Mean and Standard Deviation Normaliza-
tion in Fig. 6 show that the cluster centers have a unique 
profile. This can be strongly attributed to the data pre-
processing method used. Thus, this demonstrates that the data 
pre-processing step of the cluster analysis has unearthed 
patterns (characteristics) of the temperature data that were 
otherwise hidden in No Normalization.  

 
Fig. 5. Mean Normalization cluster centers.   

 
Fig. 6. Mean and Standard Deviation Normalization cluster centers.   

Using the VI index function in R we quantified the change 
in information when we move from one clustering combina-
tion to another. The VI between the three different data pre-
processing methods can be seen in Fig. 7, where ‘N’ is No 
Normalization, ‘M’ is Mean Normalization and ‘M&SD’ is 
Mean and Standard Deviation Normalization. While Fig. 8 
shows the VI between the two different clustering algorithms 
and between the two different distance methods. Here ‘E’ and 
‘DTW’ are the Euclidean distance and DTW distance meth-
ods, ‘Kmeans’ and ‘HC’ are the K-means and WARD.D2 
clustering algorithms respectively.  

From Fig. 7, we found that the average VI between the 
three different data pre-processing methods was 2.96. While 
analyzing Fig. 8 we found that the average VI between the two 
different clustering algorithms was lower at 0.9815. Lastly, 
the VI between the two different distance methods was 1.087. 
Thus, it is concluded that the different data pre-processing 
methods contribute most (almost 3 times) in extracting new 
information from the temperature data in our study (compared 
to distance methods or clustering algorithms). 

With the results obtained from the cluster analysis and VI, 
we narrowed down the number of combinations to be used for 
ANOVA analysis. We kept all of the three data pre-processing 
methods because of their significance in extracting new 
information from the data. Since the VI between different 
distance methods and different clustering algorithms was less 
significant than that between the data pre-processing methods, 
we selected only one of each. Our selection was the DTW 
distance method because it is more compatible with time-
series data over the Euclidean distance method and for the 
clustering algorithm, the WARD.D2 method over K-Means 
was selected. Thus, the number of clustering combinations 
was reduced from 12 to 3, (3 * 1 * 1 = 3). 

 
Fig. 7. VI between different data pre-processing methods.   

 
Fig. 8.  VI between different distance methods and different clustering 
algorithms.   
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The reduced number of clustering combinations were 
implemented again for the cluster analysis on the indoor room 
temperature data. Combining the results obtained from the 
cluster analysis with the remaining sensor data (presence, 
solar radiation, different power consumptions, etc.), we con-
ducted ANOVA analysis. From the results of the ANOVA 
analysis, we were able to determine the influence, if any, 
between the different sensors and the results obtained from the 
cluster analysis.  

In the tables below, ‘POWER’ refers to the power con-
sumed by the office, ‘HEAT1’ is the radiator power consump-
tion, ‘HEAT2’ indicates the HVAC power consumption, 
‘OCCUPATION’ refers to the presence sensor information, 
‘RHUMIDITY’ is the relative humidity, ‘SOLAR’ is the  
solar radiation, ‘PRESSURE’ refers to the indoor pressure, 
‘OUTTEMP’ is the outdoor temperature. Finally, 
‘WINDOW1’ & ‘WINDOW2’ are the window activity 
sensors for the two windows of the room. 

The ‘Category’ column indicates the type of data collected 
by the different sensors. For example, ‘OCCUPATION’, 
‘POWER’, ‘WINDOW1’ & ‘WINDOW2’ sensors are at-
tributed to the User’s activity, while ‘HEAT1’ & ‘HEAT2’ are 
credited to the Building’s operation. Lastly, the remaining 
sensors are a function of the prevailing weather and grouped 
in the Weather category. 

The daily time-series data of each sensor was suitably 
transformed for ANOVA analysis as indicated by the ‘Data 
Transformation Method’ column. ‘Daily sum’ method trans-
lates that the numerical aggregate of the data recorded by the 
sensors for each day was considered. While ‘Per day change’ 
method was used for all power related data and meant the total 
power consumption for each day. That is, the change in the 
meter reading from the start to the end of the day. Finally, the 
‘Daily average’ data transformation considered the numeric 
average of all the data recorded for each day. The number in 
brackets under each of the data pre-processing methods 
indicates the number of clusters used. 

TABLE I.   ANOVA ANALYSIS RESULTS FOR COMPLETE DATA OF  
THREE YEARS 

 

TABLE II. ANOVA ANALYSIS RESULTS WITH WINTER DATA OF  
THREE YEARS 

 

Table I shows the ANOVA analysis results when all the 
sensor data was used across the entire period of the analysis 
(3 years) and Table II gives the ANOVA analysis results when 
data from the winter months (December, January and Febru-
ary) was used across the period of the analysis. The tables  
are populated with p-values which were the results of the 
ANOVA analysis. The p-values were compared with an α of 
0.05. The green tiles indicate that the sensor has influence 
(p-value < α) on the temperature data while the red indicates 
that there is no influence (p-value > α).  

According to the data in Table I, we can conclude that all 
sensors (except power) have influence on the way the 
temperature data is clustered across the three data pre-
processing methods. However, our analysis of the data 
presented in Table II shows that a more specific approach is 
required in the method of clustering to reveal the influence of 
the different sensors on the indoor temperature clusters. The 
influence of different sensor data on the temperature is 
sensitive to and is revealed when an appropriate data pre-
processing method is applied for clustering, as seen in the 
results in Table II.  

In Table II we see that HEAT2 sensor shows no influence 
on the temperature data. HEAT2 is the HVAC power con-
sumption and should have an influence on the room tempera-
ture evolution. This can be attributed to the fact that the 
HEAT2 data is related to the functioning of the HVAC system 
for the entire building and not specifically to the room under 
our analysis. Thus, a concrete relationship between HEAT2 
sensor and room temperature could not be established. Out-
door pressure naturally has very little influence on room 
temperature and this can be verified in the ANOVA results of 
Table II.  

The main results obtained from our analysis can be 
summarized as follows: 

1) Cluster analysis using different data pre-processing 
methods enabled us to reveal hidden characteristics of 
our temperature data as shown in Figs. 4, 5, and 6. 
These characteristics were the basis of the formation of 
the clusters.  

2) Data pre-processing step of the cluster analysis con-
tributed the most in extracting new information from 
our temperature data and was verified by the VI metric. 

3) Distance methods and clustering algorithms fared 
approximately the same but less in extracting new 
information from the data when compared to the data 
pre-processing step using the VI metric. 

4) ANOVA analysis results show that the influence 
exerted by sensors on room temperature were sensitive 
to seasonal data. 

5) Depending on the data pre-processing method em-
ployed, hidden influences of the sensors were revealed 
on the temperature data using ANOVA analysis. 

6) Using ANOVA analysis we identified which sensor 
data does not have a direct role in influencing the room 
temperature evolution, e.g., PRESSURE and HEAT2. 

V. FUTURE TRENDS  
As a result of economic growth, the trend of people 

moving to urban areas and the associated urbanization poses 
challenges to a city’s services and resources [14], [32]. As a 
result, the concept of smart cities is developing extremely 
rapidly. Smart cities utilize the latest technologies to increase 
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operation efficiency of the city and improve the quality of life 
of its citizens by integrating smart grid, services, buildings, 
houses and appliances. Smart urban technologies like IoT and 
blockchain have the potential to provide significant contribu-
tions to the sustainable development of smart cities [14].  

There is an overwhelming trend of digitalization of 
buildings worldwide and more specifically in Europe 
digitalization is coupled with decarbonization. EU policy is 
driving the need for Nearly Zero Energy Buildings (NZEBs) 
incorporating Distributed Energy Resources (DERs), building 
automation and electronic monitoring of technical building 
systems [33], [34].  

Buildings are being developed to be smarter by incorporat-
ing the latest technologies and deep analytics. Smart metering 
is to be a key element of future smart homes [35]. Smart 
meters allow monitoring not only the electricity consumption 
of end-user but also the gas, water and heating  [36]. Accurate 
evaluation and analysis of data related to building operation is 
essential in order to improve energy efficiency and reduce 
overall energy consumption of buildings, as suggested in [37], 
[36].  

Connected, interacting and online devices and sensors are 
increasingly becoming the norm of a modern building system. 
At the end of 2017 there were approximately 8.4 billion IoT 
devices deployed worldwide (across industries); this number 
will increase to 20.4 billion by 2020 [38]. IoT devices are 
increasingly being incorporated for remote monitoring and 
control of different building systems [39], [40]. They can be 
used to upgrade traditional systems like the HVAC to a more 
intelligent HVAC system, increasing its energy efficiency and 
performance [40]. IoT is a technology already used in most 
modern buildings and this trend is likely to increase as the 
security of IoT interacting devices increases.  

Blockchain is a technology that is increasingly considered 
to compliment IoT in order to facilitate IoT mass adoption by 
solving the security and privacy issues associated with IoT, as 
stated previously. Blockchain and IoT will converge as block-
chain will add immutability and integrity to IoT transactions. 
Another important aspect of blockchain is its scalability, 
meaning that as more devices are connected to the blockchain, 
the more secure it becomes. Analysis in [41] reports that in 
2016 an average household held 7 connected devices every 
day and this number is likely to increase; thus, the conver-
gence of blockchain and IoT is inevitable. 

Peer-to-peer (P2P) energy trading is also a domain where 
blockchain technology is employed. Increasingly buildings 
today are producers of energy through distributed renewable 
energy generation can feed excess energy back to the grid. 
Blockchain and smart meters are used to track any traded 
energy along with the transaction, which is executed through 
smart contracts. 

VI. CONCLUSIONS 
The aim of our analysis was to study and understand how 

the behavior of the indoor room temperature is influenced by 
different sensor data. Indoor room temperature was consid-
ered as the basis of our study because space conditioning 
contributes significantly to the building energy consumption; 
thus, room temperature is a good parameter to consider in 
order to investigate energy reduction potential in buildings.  

One of the key results from our analysis is that the data 
pre-processing methods contribute the most to extracting new 

information from the data, which was verified using the VI 
index function. From the different ANOVA analyses, we 
determined that different data pre-processing methods help to 
reveal the hidden influence different sensors exert on the 
indoor temperature. The influence of the different sensors was 
further enhanced when seasonal data was considered.  

However, a limitation to our analysis is that some of the 
parameters affecting the indoor room temperature, e.g., the 
orientation of the room with respect to the sun, the irradiation 
experienced in the room that are valid influencers of indoor 
room temperature, were not considered. Missing or incom-
plete data is also an issue in our analysis. Different data pre-
processing and data analysis tools specifically designed for 
time-series analysis and with a tolerance for missing data can 
be utilized to give more accurate information.  

Another limitation is the accuracy of the sensors. Some-
times a sensor operates perfectly but does not register the 
‘correct’ data, e.g., one ‘error’ observed in our analysis was in 
the case of the presence sensor. The role of the presence sensor 
is to register when the person is in the room, i.e., if the person 
is in the room it registers ‘1’, else ‘0’; but the presence sensor 
used for the analysis detects significant movements and 
interprets those as presence. In normal everyday working 
environments, people spend most of the time seated. So, the 
presence sensor will read large movements like moving in and 
out of the room, but, may not register the person sitting in the 
office as presence, which is inaccurate information. 

Connected and online smart home IoT devices can record 
and store tamper-proof information onto a common block-
chain. The use of blockchain by IoT devices eliminates data 
duplication, increases accuracy and transparency, increases 
home automation potential and execution speed through 
carefully coded smart contracts and provides greater resilience 
to the smart home system from a cybersecurity point of view. 
Increased performance in home automation translates to 
greater energy efficiency for buildings, thus reducing costs 
through reduced energy consumption for owners and reduc-
tion of GHG from the environment. 

Apart from reduction in costs, there is also potential for 
additional income through P2P and building to grid energy 
trading which smart contracts can help facilitate. Additional 
income can also be generated using carbon certificates that can 
be sold on a blockchain.  

VII. FUTURE DIRECTION AND PERSPECTIVES 
The next step of our study is to conduct further analysis on 

sensor data by weighing their influence exerted on the 
temperature evolution and to model a better and more 
complete energy prediction tool for buildings. Building on 
this, latest technologies like IoT and blockchain can be 
leveraged to make building energy reduction a more active 
and automated process.  

There exists a significant potential of building energy 
reductions in the operation of energy hungry HVAC systems 
used in buildings. HVAC systems are ubiquitous in both 
residential and commercial buildings, and though they per-
form their task of conditioning the room space effectively, 
they do not necessarily always perform the task efficiently. 
Using the latest forward-looking technologies like IoT and 
blockchain technology, a traditional HVAC system can be 
converted into a Smart or an Intelligent HVAC system with an 
objective of ensuring energy efficiency without compromising 
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the thermal comfort of the occupants. IoT devices can be used 
for monitoring data and interacting with each other while 
recording the information on a blockchain. Blockchains can 
utilize this information with smart contracts designed to 
maintain a balance between energy efficiency and thermal 
comfort. Smart contracts can be used to automate and drive 
the connected IoT devices. This will make significant strides 
towards the effective and efficient operation of NZEBs. 
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