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Abstract—The Vehicle-to-Grid (V2G) network is, where the
battery-powered vehicles provide energy to the power grid, is
highly emerging. A robust, scalable, and cost-optimal mechanism
that can support the increasing number of transactions in a V2G
network is required. Existing studies use traditional blockchain as
to achieve this requirement. Blockchain-enabled V2G networks
require a high computation power and are not suitable for micro-
transactions due to the mining reward being higher than the
transaction value itself. Moreover, the transaction throughput
in the generic blockchain is too low to support the increasing
number of frequent transactions in V2G networks. To address
these challenges, in this paper, a lightweight blockchain-based
protocol called Directed Acyclic Graph-based V2G network
(DV2G) is proposed. Here blockchain refers to any Distributed
Ledger Technology (DLT) and not just the bitcoin chain of blocks.
A tangle data structure is used to record the transactions in the
network in a secure and scalable manner. A game theory model
is used to perform negotiation between the grid and vehicles
at an optimized cost. The proposed model does not require the
heavy computation associated to the addition of the transactions
to the data structure and does not require any fees to post the
transaction. The proposed model is shown to be highly scalable
and supports the micro-transactions required in V2G networks.

Index Terms—Directed Acyclic Graph, Vehicle-to-Grid, En-
ergy Trading, distributed applications, consensus, Smart Grid,
blockchain.

I. INTRODUCTION

Due to a lack of non-renewable energy resources, revolu-
tionary changes are taking place in the energy sector in order
to generate renewable energy. Huge developments have been
recently witnessed in Renewable Energy Resources (RES),
such as wind and solar photovoltaic panels. The issue with
RES is that their power generation fluctuates as per the weather
and climate conditions, and the exact prediction of the amount
of generated energy is not easy. Thus, traditional power gen-
erators face unpredictable fluctuations in their power demand
due to the uncertainty in RES. The smart grid is anticipated
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as a next-gen power grid that can help distribution companies
provide local resources to their customers, to overcome this
problem. With smart grids, information can be exchanged
between consumers and the grid, and energy flow can take
place between consumers and different parts of the smart
grid. In this context, Electric Storage Units (ESUs) [1] are
enabled using smart grids that store excess energy, available
at customers. Local neighborhood demands and other internal
demands for energy can be met using these storage units. The
smart grid makes the interaction between power sources that
are situated in different places possible. Since many consumers
are capable of generating energy, trading the excess amount
of energy with other consumers seems plausible. For example,
neighbor A can sell the surplus of clean, renewable energy
generated from the solar panel on his/her rooftop to neighbor
B.

To meet the energy demand and to efficiently use the gener-
ated renewable energy, it is important to generate possibilities
of energy trading among all consumers and producers. Without
such a model, some consumers will continue to face energy
deficiency, and some producers will have to waste the extra
generated energy without any monetary benefits. The concept
of Vehicle-to-Grid (V2G) was recently introduced to solve
these problems [2]. Also, the Electric Vehicle (EV) [3] is
emerging in the energy market, which aims to ease the load
imposed on the traditional grid by applying such as Grid-
to-Vehicle (G2V) and V2G. Here, V2G is defined as the
provision of energy and other necessary support from an EV
to the electric grid. Meanwhile, V2G can be seen as one
step ahead of smart charging. In V2G networks, EVs use bi-
directional charging and can sell/buy energy to/from the grid
depending on the situations [4], [5]. A V2G technological
scheme was introduced in Lombok and Utrecht to illustrate
the opportunities that EVs provide.

V2G is a suitable solution for better resource utilization
and revenue maximization, since vehicles remain parked for
an average time of 96% throughout the life of the vehicle [6].
EV can interact and trade energy with other traders, and it
can also work independently by participating in energy trading
with the grid based on its battery status [7]. The only condition
imposed here is that the vehicles and the other traders and grid
should be within the same network. Many smart, sustainable,
and green solutions have been developed in the last decade, to
consume the energy produced in an environmentally sustained
way [8]. For example, residential areas are deployed with
Distributed Energy Resources (DERs) [9]. To manage the elec-
tricity in the grid effectively, various demand response energy
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management services were established in [10]. Figure. 1 shows
a pictorial representation of the scenario under consideration.

The traditional method of storing every single energy trans-
action on central servers is not feasible for such micro-
transactions. Using cryptocurrency is a promising alternative
for registering each energy or data transaction. Distributed
Ledger Technology (DLT) plays a major role in storing these
cryptocurrency-based transactions. For storing all transaction
data in a distributed storage, the concept of blockchain is
widely explored in the energy market [11]. Blockchain allows
a secure Peer-to-Peer (P2P) transaction platform. In the P2P
platform, no utility company acts as an intermediary and any
individual node in the network can act as a buyer or a seller.
In such a scenario, households can be consumers, as well as
prosumers, i.e., entities that can produce and consume their
electricity themselves and can also sell excess electricity [12].
Recently many researchers have focused their work towards
using blockchain-based ledger technology for creating a P2P
platform for energy trading [13], [14]. Such a transition is due
to the following major advantages of blockchain, or any DLT,
over traditional centralized systems.

1. Blockchain provides decentralized and distributed ledger
for the storage and processing data, there is no payment
to any central authority required to get data storage and
organizing facilities [15].

2. There is no need to trust any third party because the state
of the chain is decided by the majority of participants
agreeing on the smart contract.

3. Records of transactions are tamper-resistant and account-
able.

4. Self-executing lines of code can be added as a smart
contract to prevent all kinds of disputes among the
involved parties.

5. The complete control of the asset movement is with
the smart contract and transactions can be immediately
processed using cryptocurrencies.

However, the generic blockchain algorithm suffers from
some fundamental drawbacks such as the latency of transaction
confirmation, the scalability limitations, and the probabilistic
nature of consensus algorithms [16], [17]. Microtransactions
cannot be added in normal blockchains as the incentive given
to the miners for such transactions ends up to be higher than
the actual transaction value. Processing fees of transactions
are increasingly high and the size of the block is constrained
due to which implies that a large number of transactions can’t
be handled, making traditional blockchain less practical [18].
Various works propose the use of other consensus algorithms
such as Proof of Stake (POS), Proof of Burn (POB), or Proof
of Elapsed Time (POET) to overcome the limitations of the
generic blockchain. However, all these consensus algorithms
follow the Proof of Work (POW) algorithm. The network
development and the distribution of currency depend on the
POW algorithm only [19], and the other algorithms can be
applied only after using POW for a considerable time. A
new distributed application cannot be created using the POS
consensus process as none of the nodes in the network has
any stake or cryptocurrency to burn. Therefore, in this paper

Directed Acyclic Graph (DAG) based IOTA ledger is used
to perform P2P transactions in V2G energy trading [20].
Unlike normal blockchain, IOTA-based blockchain ledger does
not have any miners to process transactions [21]. However,
the facilities provided by the normal blockchain, such as
distributed and transparent transaction records, are fulfilled by
IOTA-based blockchain [22]. Moreover, the IOTA network is
not susceptible to distributed denial of service attacks as no
single node is given any unique privilege to create or maintain
the data structure. Therefore, IOTA-based blockchain is the
right option for trading energy in a P2P domain in the V2G
network.

A. Research contributions of this work

We summarize the main contributions of this work as
follows:

1. We propose a unique and secure energy trading platform
in V2G network.

2. It is based on Directed Acyclic Graph (DAG) which uses
tangle data structure to store transactions.

3. We implement the tip selection algorithm which allows
buyers and sellers to add new transactions in tangle
without needing any miners.

4. The proposed energy trading model uses game theory
for selecting sellers and price at which sellers will trade
energy with buyers.

5. The use of game theory ensures nash equilibrium among
buyers and sellers thereby maintaining the energy selling
price.

B. Organization

The current state and recent works related to energy trading
in V2G networks using traditional and blockchain systems
are presented in Section II. Some background information
and key characteristics of the IOTA ledger technology and
system model for P2P energy trading in the V2G network
are presented in Section III. Section IV presents the game
theory strategy for selecting the right seller and buyer. While
the auctioning model to bargain the energy price is discussed
in Section V. The Ascending-Price progressive auction algo-
rithms are presented in Section V. In Section VI, the simulation
results are presented and are compared with the existing
traditional models for V2G energy trading. The conclusion
of the paper is presented in Section VII.

II. RELATED WORK

Many researchers are working on the idea of trading energy
from V2G using EV and smart grid. A three-party architecture
was proposed to achieve effective RES in the power system
using EVs, smart grid, and ESUs in [23]. The architecture
involves a flexible and complex exchange between EVs and
the smart grid, where a framework is proposed to manage
energy effectively and intelligently in a power system. In
[31], a response scheduling algorithm to accommodate more
EVs was introduced. In this work, a framework to regulate
the performance of the V2G network in an efficient manner
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Fig. 1: Smart City Scenario.

TABLE I: Related work on vehicle to grid communication.

Year Author Contributions
2016 Rongqing Zhang et al. [23] A three-party architecture to achieve effective RES in power system.
2016 Suli Zou et al. [24] Auction based game theoretic approaches for bargaining energy trading prices between EVs and market.
2017 Zhaoxi Liu et al. [25] Non-cooperative nash equilibrium game scheduling techniques for charging and discharging of EV.
2017 Jiawen Kang et al. [26] Method of consortium blockchain that uses P2P energy trading model for EVs.
2017 Se-Chang Oh et al. [27] Blockchain-based energy trading system showing exchange transaction between users .
2018 Esther Mengelkamp et al. [28] Advantages and disadvantages of using blockchain for trading energy.
2019 Merlinda Andoni et al. [29] Key features of DLT needed for trading energy in P2P network.
2019 Sahil Garg et al. [30] Hierarchical authentication mechanism based on blockchain for trading energy in V2G network.

were proposed. According to their dispatch algorithm for EVs,
remote signals are used for switching charging stations on and
off.

Authors of [25], w5 devised a non-cooperative nash game
scheduling techniques for discharging and charging of EV.
The problem of overload of the grid at peak hours due to
the high demand of charge by EVs is considered. A central-
ized optimization problem aiming to minimize the squared
Euclidean distance between the instantaneous energy demand
and the average demand of buildings by controlling the
charging and discharging schedules of Plug- in Hybrid Electric
Vehicles (PHEVs) is formulated. Meanwhile, the authors of
[25] proposed an aggregative game model that helps in the
scheduling of EVs optimal charging. Quadratic programming
is used to calculate the nash equilibrium of the game model
in an optimized way. Meanwhile, Woongsup Lee et al. [32]
have analyzed price competition between the newly developed
Electric Vehicle Charging Stations (EVCSs) and Renewable
Power Generators (RPGs) using game theory.

Auction-based game-theoretic approaches have been intro-
duced by the authors of [24], which can be used for bargaining
the price of energy traded between EVs and market and solve

the coordination problems arising from charging EVs. The
convergence of the auction process to the nash equilibrium
with the help of a numerical example was also demonstrated.
The authors of [33] developed an auction mechanism that can
determine the price for trading energy between EVs and smart
grids. Simulation results show significant improvements in the
average utility when compared with a greedy approach. In
[34], authors proposed a Bayesian Coalition Negotiation Game
(BCNG) and achieved a nash equilibrium for managing and
trading energy in the V2G environments. A Secure Payoff
Function (SPF) to avoid the misuse of consumed energy was
proposed. Protection from attacks while distributing power
and mutual authentication is also provided in the proposed
scheme. Finally, the authors of [35] proposed charging and
discharging cooperation of PHEVs in V2G networks using a
game-theoretic approach in their research work. The signif-
icant reduction of peak-valley difference in the smart grid’s
electricity load was obtained in the simulation results.

All the above works more or less depend on centralized ar-
chitectures. Such architectures suffer from some fundamental
defects, such as a single point of failure, security issues, and
scalability issues [36]. Few recent works have shown interest
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in creating a distributed P2P network for energy trading using
traditional blockchain. Authors of [26] proposed a method of
consortium blockchain which uses P2P energy trading among
EVs. To illustrate the operations taking place in energy trading,
they proposed a method known as P2P Electricity Trading
System with Consortium Blockchain (PETCON). Along with
the PETCON method, the issue of energy pricing and the
amount of energy traded among EVs was solved using iterative
double auction game theory. Andoni M. et al. [29] discussed
the key features of DLTs needed for trading energy, with
a focus on distributed consensus algorithms, taxonomies of
blockchain architecture, and the suitability of those algorithms
in smart grid-based networks. Along with that, the challenges
that are going to come in the way of developing an energy
trading platform for the V2G network were discussed.

For trading energy in the V2G environment, authors of [30]
discussed a hierarchical authentication mechanism based on
blockchain. In their work, they used elliptic curve cryptogra-
phy (ECC) for hierarchical authentication. ECC can be used
for preserving EVs’ anonymity and for supporting mutual
authentication among charging stations (CSs) and EVs. The
protection against different attacks has been validated using
the Automated Validation of Internet Security Protocols and
Applications (AVISPA) tool. Esther Mengelkamp et al. [28]
simulated the blockchain-based local energy market (LEM)
and have discussed the advantages and disadvantages of
using blockchain for energy trading. They implemented a
closed double auction mechanism via a smart contract using
blockchain. The authors of [27] implemented the blockchain-
based energy trading system, showing the process by which a
producer and consumer nodes complete their exchange trans-
actions. The interaction between the producer and consumer
nodes and implementation of an energy trading system is
shown using Savoir (python-based JsonRPC module). Al-
though the generic blockchain-based frameworks help provide
a secure distributed environment for P2P energy transactions,
such frameworks also have some inbuilt limitations. Nor-
mal blockchain frameworks cannot support micro-transactions
between a large number of nodes. Also, the forking and
pruning issues in generic blockchain result the efficiency of
the framework. Therefore, in this work an IOTA based P2P
distributed network that can support micro-transactions with
a large number of nodes is proposed. The proposed model is
free from forking and pruning issues, and no mining fees are
involved while validating the transactions. In the next Section,
the prelims of the IOTA network and the proposed network
model are discussed.

III. NETWORK CREATION AND PRELIMINARIES

IOTA ledger turns out to be a feasible option, to record
and process the large number of frequent micro-transactions
in the V2G network. IOTA is a DAG-based distributed ledger,
where a DAG is referred to as a tangle in IOTA [20]. IOTA
tangle provides interesting features such as fee-less micro-
transactions, asset transfer, and trusted identities. When all the
devices get connected to the IOTA network, they act as nodes
in the network. The devices can securely transfer data and

perform transactions directly with each other without involving
any centralized third party. The EVs, when parked, can buy
energy from nearby malls or offices, or can use the extra
energy to power the street lights nearby at night.

A. Digital Identity

One of the most important building blocks for any DLT
is digital identity. Digital identity is used to ensure the level
of trust among the parties involved in energy transactions. Re-
cently, the IOTA community has developed a digital biometric
identification in which a person’s palm vein pattern is used to
identify him/her, namely the IAMPASS biometric palm vein
authentication for digital identity in IOTA [37]. Centralized
and traditional identification methods often fail to secure user
data that is growing at a tremendous rate. Therefore, verified
digital identity, stored on a distributed ledger, is an innovative
alternative. Also, digital identity verification methods are free
from fee expenses charged by third-parties for providing
authentication and verification services.

Each smart device has its own pseudo-anonymous, a virtual
and private wallet that stores IOTA tokens used for making
transactions. To use an IOTA network, the user has to create a
secret password called seed (a string of 81 trytes) [38]. Each
seed can create 957 addresses and private keys. Users can send
messages and tokens to other users using the address field in
the transaction which is public. To withdraw IOTA tokens from
addresses, bundles are signed using unique private keys.

B. Tip Selection Algorithm

In generic Blockchain, to verify whether the user is making
an authentic transaction or not, computing power is a ma-
jor factor. Miners are used to validate normal blockchain,
where all transactions are to be added in the next block.
The task of mining in the traditional blockchain is done
by new transactions in IOTA, i.e., approval of transactions
is done by the participation of all the nodes directly or
indirectly present in the network, thereby making miners and
participant nodes indistinct. This prevents the IOTA network
from distributed denial of service (DDOS) attacks. Whenever
a new transaction comes in the tangle, it has to select and
approve two previous transactions. An edge is created between
the selected transactions and the newly added transaction.
The new transaction has to solve a cryptographic puzzle,
to approve an existing transaction. Once this is done, the
new transaction waits for its approval by another upcoming
transaction. Unapproved transactions in a DAG are referred
to as a tip. The tip-selection algorithm decides how the tip
gets validated by new transactions [20]. Hence, the transaction
confirmation latency depends on tip-selection algorithms and
the rate at which new transactions are added in the tangle.
The frequency of transactions that can get added in the IOTA
network is very high compared to the ten minutes waiting time
to add a new block in normal blockchain.

The tip selection algorithm gives a special rating to each
transaction, which is equal to the number of transactions
that reference it. The larger the weight of a transaction the
more important it is. The aim of this implementation is to
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select two non-conflicting tips for the verification of the newly
arrived transaction. The cumulative Weight (CW ) of any
transaction X is given as its own weight plus the weight of
transactions that approved it directly or indirectly. For example
if X2, X3, X4, ...., XN are the transactions that approve X1

directly or indirectly, and the weight of X1 is WX1 and while
the weight of X2, X3, X4, ...., XN is WX2,3,4,...,N , then

CWX1 =
N∑
i=1

WXi (1)

But when the size of the tangle is very large, it becomes really
difficult to recompute the weight of all the transactions in the
past. Therefore to overcome this challenge, a new algorithm
has been proposed to calculate the cumulative weight of the
transactions using a fixed section of the DAG called subgraph
[39].

C. Consensus Mechanism

Generating a level of trust among the nodes for the authen-
ticity of the transactions is imperative for every distributed
ledger technology. Since we want to trade energy, we will
exchange currency in return. Also, to exchange highly sensitive
data, we have to be sure that whether we want to depend on
these trustless networks or not. In the traditional blockchain,
the consensus is reached using a deterministic approach, i.e.,
the transaction will be valid in blockchain when a number
of blocks are added in the chain. In IOTA, the consensus is
reached i.e., tangle eventually is stochastic (or probabilistic).
When almost all the participants in an IOTA network say that
your transaction is more valid than this other transaction, then
consensus will be achieved.

In the IOTA, the consensus is distributed in the tangle,
and for placing one’s own transaction in the network, the
participant has to validate two past transactions, as discussed
above. Apart from securing IOTA from the tip selection
algorithm and cumulative weight-based consensus mechanism,
a new security layer has been added to overcome the issue of
conflicting tips. This security measure is called the shimmer,
and it is a voting-based mechanism. Shimmer overcomes
the drawbacks faced by traditional voting schemes. In this,
the consensus for conflicting tip is achieved by proactive
communication between the nodes.

IV. SYSTEM OVERVIEW

Fig. 2 shows the detailed overview of the proposed V2G
model. Initially, after the vehicles and grid join the network,
they start with a message passing process. These messages are
recorded on the IOTA tangle.

1. The first box shows the first step where the message
passing takes place between the EVs and the grid users.
The EVs can ask for energy from the grids or may offer
for selling energy to the grids.

2. The second box shows the tangle creation to securely
store the information that is being exchanged between
the vehicles and the grid. The different transaction colors
specify their cumulative weight. Once the transaction is

verified by new transactions, the color becomes green.
Initially, the color is kept as grey until the transaction is
not verified.

3. The third box shows the process of Evolutionary Game
Theory (EGT) being applied among the grids based on
the energy price offered by the electric vehicles.

4. The fourth box shows the application of the Non-
Cooperative Game Theory (NCGT) among the electric
vehicles based on the selection probability given by grids.

5. Finally, a Stackelberg Game Theory (SGT) is applied to
associate the best possible electric vehicle with the best
possible grid, as shown in box 5 and 6.

A. Structure of V2G network

In the proposed system model, a residential area, comprising
of smart homes, EVs, smart supermarket, smart hospitals or
any smart IoT device which can produce energy with the help
of solar or wind panels, is considered. Every device, vehicle
or grid, acts as a prosumer (both producer and consumer)
in the model. The user acts as a buyer when he/she is in
need of energy and is unable to meet the demand due to
high consumption or unsteady generation. The seller, on the
other hand, is one that has a surplus amount of energy. While
generating and consuming electricity, expenses vary due to:

1. Climatic conditions: More electricity is consumed in the
cold weather, and more of electricity is generated in the
summer by PV panels.

2. Time of the day: Demand is increased in the morning
when users are at home, and the output from PV panels
is at its peak during midday.

3. Balanced electricity grid: To meet the high consump-
tion requirements during peak-time, expenses should be
higher than in off-peak time.

Every prosumer, either grid or vehicle, consists of a load
and solar panel (SP). The SP of a prosumer is connected
to the ac (Alternating Current) system and load through SP
inverter (ac/dc converter). If a prosumer has both battery and
SP installed, then can be connected via ac-coupled or dc-
coupled topology. The battery is connected through the ac/dc
converter to the ac side of the SP inverter in case of ac-coupled
topology. In the dc-coupled topology, the battery is connected
through the ac/dc converter at the dc side of the SP inverter.

All the vehicles and grid present in the residential area act
as nodes of the IOTA network and can communicate with
each other. A digital protocol known as the smart contract
will be installed on the IOTA network, which will enforce
the prosumer’s energy management (PEM). Every time a user
requests data or shares energy, the smart contract will run
and facilitate the transaction. The data consisting of energy
transactions, generation, and consumption of every prosumer,
is stored at the IOTA network itself. The smart contract can
be seen as an agent whose duty is to operate and store
information regarding all the transactions that occurred during
trading energy and the number of IOTA tokens sent during
each transaction. We assume that the transmission cost and
losses are very low or negligible since the amount of energy
trading taking place in the V2G network is small. The main
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Fig. 2: Energy Trading between Electric Vehicles and Grids.

goal of this research is to develop an algorithm that assists in
trading energy in the V2G network.

Let A = {1, 2, 3, . . . , i, . . . , A} be the set of A , |A|
number of prosumers in a residential area with i ∈ A. It is
assumed that the total time of action is divided into equal
intervals i.e., ∆t = 1. Let T = {1, 2, 3, . . . , t, . . . , T} be the
set of T , |T | number of time slots.

The solar power production profile of a prosumer i during
a day can de defined as follows.

Psp,i =
{
P 1

sp,i, P
2
sp,i, P

3
sp,i, . . . , P

T
sp,i

}
, i ∈ A (2)

where P 1
sp,i refers to the solar power production by prosumer

i in the first time slot. The consumption profile of prosumer i
during that same time period is given as follows.

Ci =
{
C1
i , C

2
i , C

3
i , . . . , C

T
i

}
, i ∈ A (3)

where C1
i is the power consumption by prosumer i in the first

time slot.

B. Electric Storage Units

Let Et−∆t
i and Eti be the energy level of the ESU of

prosumer i at the beginning and end of the assumed time slot.
Take Btcp,i as the charging power of the ESU of prosumer
i at time t and let Btdp,i be the discharging power of the
ESU of prosumer i at time t. It is assumed that the charging
and discharging power of the ESU remain constant and the
self-discharge of the ESU is neglected during time t. Let the
Charging and discharging efficiency of the ESU for prosumer
i be ηtcp,i and ηtdp,i respectively. Binary variables for prosumer
i charging and discharging in time t are denoted by αti and βti ,
respectively. To avoid concurrent discharging and charging of

the ESU, the sum of both the binary variables should be less
than or equal to 1 i.e.,

αti + βti ≤ 1 (4)

The energy stored during charging and discharging of the
ESU is represented by φti and ϕti, respectively and is mathe-
matically modeled as follows [30].

φti = αtiB
t
cp,iη

t
cp,i∆t (5)

ϕti =
βtiB

t
dp,i∆t

ηtdp,i

(6)

where each time slot’s length is denoted by ∆t. Hence the
total energy stored in the ESU can be modeled as:

Eti = Et−∆t
i − (ϕti − φti) (7)

In practical scenarios, size of SP inverter decides the max-
imum and minimum limit of charging power and discharging
power and the limits are given as follows:

0 6 Btcp,i 6 Bmax
cp,i , 0 6 Btdp,i 6 Bmax

dp,i (8)

In the above equation, the maximum charging power is rep-
resented by Bmax

cp,i and the maximum discharging power is
represented by Bmax

dp,i . The cost of the ESU, the vehicle’s
wear and tear cost and the cost of purchased energy are the
three primary factors in the computation of the cost of the
V2G network. The use of ESUs will benefit V2G networks if
and only if the ESU’s cost per day i.e., CD is less than the
corresponding cost saving. If the total saving done in a day is
not more than the daily cost, use of ESU will not be justified.
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TABLE II: List of Acronyms

Notation Meaning
CW Cumulative Weight of the transaction
WX weight of transaction X
A Total number of prosumers in a residential area
T Total action time
Psp Production of prosumer
C Consumption of prosumer
Eti Energy level of ESU for prosumer i at time t
Btcp,i Charging Power of ESU for prosumer i at time t
Btdp,i Discharging Power of ESU for prosumer i at time t
ηtcp,i Charging Efficiency of ESU for prosumer i at time t
ηtdp,i Discharging Efficiency of ESU for prosumer i at time t
αti Binary variable related to charging of ESU
βti Binary variable related to discharging of ESU
φti Energy stored during charging of ESU
ϕti Energy stored during discharging of ESU
CD Cost per Day of ESU
ω Degradation cost of EV
LT ESU’s lifetime throughput energy
M Prosumers who becomes sellers at time t
N Prosumers who becomes buyers at time t
ζti Production-to-consumption ratio
Bts,m Power that prosumer m sells at time t
Btb,n Power that prosumer n buys at time t
Vt Amount of energy delivered to grid at time t
Gt Amount of energy required by grid at time t
p Prosumer level of power consumption
ξ Constant value depends upon prosumer
U(p, ξ) Utility function for prosumer
W(p, ξ) Welfare function for prosumer
Rm Supply to Demand ratio of prosumer
Dm Demanded energy from electric vehicle m
Qtm Probability of selecting electric vehicle m at time t
utm Net utility of electric vehicle m at time t
ut Average Net utility of electric vehicles M
$t
m Price given by electric vehicle m at time t

x Iteration number in EGT
y Iteration number in NCGT

The CD is given as:

CD =
1

Yd

[
MC +

(1 + r)lr

(1 + r)l − 1
× CU

]
(9)

where Yd represents tthe number of days in a year, MC
represents the cost of maintaining the ESU annually, r is the
interest rate for financing ESUs, l is the ESU’s lifetime in
years and CU is the combined cost of converter and ESU.
The EV’s wear and tear cost in V2G can be calculated as the
degradation cost ω [40] due to extra running time:

ω =
CU
LT

(10)

where LT is the ESU’s lifetime throughput energy and is given
as:

LT = DD ∗ Eti ∗ l (11)

Depth-of-discharge DD is another factor that describes the
depth of the ESU’s discharge. DD should remain above a
certain level at all time to increase the overall ESU’s lifetime.

C. Classifying Buyers and Sellers

Let M and N denote the seller and buyer at time t
respectively where index m ∈ M, n ∈ N and i ∈ A.
M , |M| and N , |N | gives total number of sellers and
buyers respectively at given time t.

The production-to-consumption ratio ζti for prosumer i ∈ A
at time or in the time interval t ∈ T is given as:

ζti =
P tsp,i
Cti

(12)

where ζti is greater than 1 for sellers and lower than 1 for
buyers. The amount of power that prosumer m ∈M can sell
and n ∈ N can buy at time t are respectively given as:

Bts,m = Ctm
(
ζtm − 1

)
(13)

Btb,n = Ctn
(
1− ζtn

)
(14)

In the proposed system model, we are considering only
vehicles as sellers and grids as buyers, i.e., only V2G exchange
is considered. However, a similar model can be used to ac-
commodate vehicle-to-vehicle (V2V), grid-to-vehicle (G2V),
and grid-to-grid (G2G) communications and trading. At any
time t when the grid wants to consume energy from the
vehicle, various constraints are to be considered. The minimum
amount of energy that an EV m ∈ M should always have is
represented by ϑtmin. The amount of energy the EV m ∈ M
is carrying at time t is denoted as ϑtm. Hence, the amount of
energy delivered to grid Vt is calculated as follows.

Vt = DD

(
ϑtm − ϑtmin

)
(15)

Also, the amount of energy required by the grid Gt at time t
is obtained as:

Gt = %− %tn (16)

where the total capacity of the grid is % and the storage level
of the grid at the time of energy trade is denoted as %tn.

D. Utility and Welfare function for Prosumer

Behaviour of each entity could be independent based on
time, price, etc., in V2G system. Different parameters such
as electricity price, weather conditions, and time of the day
determine the energy demand of each user. The energy demand
also varies with the type of user i.e., industrial users and
residential users can have different opinions on the same
electricity price. The utility function can analytically model the
response of users to different prices. Let U(p, ξ) be the utility
function for V2G network where p represents the user’s level
of power consumption and ξ represents a parameter that varies
according to prosumers. The level of happiness or satisfaction
when a user consumes some power is represented by a utility
function. Consumers are generally modeled using quadratic
utility functions [41, 42] and logarithmic utility functions
[43, 44, 45, 46].To calculate the satisfaction level of prosumer
i ∈ A in time t ∈ T , the quadratic utility function is given as:

U
(
pti, ξ

t
i

)
=

{
ξt

κi
if pti >

ξti
κi

ptiξ
t
i − (pti)

2 κi

2 if 0 6 pti 6
ξti
κi

(17)
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where κi is a predefined constant. The welfare function
W(p, ξ) for prosumer i ∈ A at time t ∈ T is given as follows.

W
(
pti, ξ

t
i

)
= U

(
pti, ξ

t
i

)
− pti$t

i (18)

where $t
i represents the price imposed by the seller.

V. GAME THEORY IN V2G NETWORK

In the proposed model, the smart grid acts as multiple
buyers and EVs as multiple sellers. The Evolutionary Game
Theory (EGT) model is used to select the best possible EV
to buy energy from. EGT focuses more on the dynamics of
change in the strategy. There is a competition among the grids,
and to resolve the competition, EGT is used as the grids are
constantly changing strategies to earn more profit. Another
level of competition lies between the EVs. A Non-Cooperative
Game Theory (NCGT) model is used to settle this competition.
All the EVs are competing with each other to sell the energy
to the grid at the best possible price. There is no cooperation
among the EVs, and therefore NCGT is the best suitable model
for this interaction. Further, a Stackelberg Game Theory (SGT)
model is used for the interactions between the buyers and
sellers. In the Stackelberg game model, the leader moves first
and, based on the move of the leader, the follower decides its
move. Therefore, to cater the interaction between EVs and the
grid, a Stackelberg game is used.

A. Selection of appropriate EV Using EGT

The population group n ∈ N in the proposed EGT model
consists of all smart grids and they act as buyers. Once the
EVs display their prices, each grid chooses an EV from which
it will buy energy. The selection strategy of a grid is gradually
adjusted and the EV is selected by the grid in an independent
way during the process of selection. The probability that the
EV m ∈ M is chosen by the grid n ∈ N in the tth hour is
given by Qtm. The ratio of supply and demand for EV m at
time t is given as follows.

Rm =
Bts,m
Dm

(19)

where Dm is the energy demand coming to EV m from the
grid and i ∈ A. The value of Dm used in the above equation
is calculated as follows.

Dm = Qtm
M∑
m=1

pt∗i (20)

where
pt∗i = arg max

pti

W
(
pti, ξ

t
i

)
(21)

when the value of Rm is less than 1, then the true value of
the power that the grid buys from the EV is

pti,true = QtmRmpt∗i (22)

and when the value of Rm is greater than or equal to 1, then
the true value of the power that the grid buys from the EV is:

pti,true = Qtmpt∗i (23)

The sum of the welfares of all grids obtained from EV m
gives the net utility of grid n. When Bts,m is greater than or
equal to the demand Dm, the net utility is given as:

utm =
1

2

M∑
m=1

κn
(
pt∗i
)2

+ Z (24)

and when Bts,m is less than the demand Dm, the net utility is
given as:

utm =

[
Rm −

(Rm)
2

2

] M∑
m=1

κn
(
pt∗i
)2

+ Z (25)

where
Z = P tn

(
ξtn −

κn
2
P tn

)
(26)

We design replicator dynamics to depict the buyers’ selection
dynamics:

∂Qtm
∂t

= Qtm
(
utm − ut

)
(27)

where ut is defined as the average utility obtained as:

ut =
M∑
m=1

utmQtm (28)

At stable conditions, the probability of selecting a seller will
be fixed and the net utility of each EV will be equal to the
average utility ut. Hence,

∂Qtm
∂t

= 0 (29)

Using equation (26), (27) and (28), we get:

∂
∑M
m=1Qtm
∂t

= ut

[
1−

M∑
m=1

Qtm

]
(30)

Hence
∑M
m=1Qtm = 1 and Lyapunov theory can prove the

stable condition stated in equation (28) using the dynamics
designed in equation (26). The equilibrium state in EGT is
represented by:

Qt∗ =
[
Qt∗1 ,Qt∗2 ,Qt∗3 , . . . ,Qt∗M

]
(31)

The approximation of replicator dynamics can be found in
an iterative manner with the help of discrete the replicator as
follows:

Qtm(x+ 1) = Qtm(x) + σ1Qtm(x)
(
utm(x)− ut(x)

)
(32)

The criteria for its termination is given as:∣∣utm(x)− ut(x)
∣∣ < C (33)

where C is a small positive number, σ1 is the adjustment
parameter and x is the number representing iteration.

B. EVs using NCGT for Maximizing Own Benefit

Since EVs run independently and do not form coalitions
with other EVs, they use NCGT and behave reasonably. When
Bts,m is less than or equal to the demand Dm, then welfare
function of EV is given as

W
(
ptm, ξ

t
m

)
= U

(
ptm, ξ

t
m

)
+$t

mB
t
s,m (34)
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Algorithm 1 Algorithm for Selecting EV using EGT
Input: Price from EVs $t

1, $
t
2, $

t
3, . . . , $

t
m

Output: State of equilibrium Qt∗ = [Qt∗1 ,Qt∗2 ,Qt∗3 , . . . ,Qt∗M]
Initial probability assigned randomly by grid to EVs such that∑M
m=1Qtm(1) = 1 ;

x = 0;
repeat

x = x+ 1;
for all m ∈ M do

Calculate Rm(x) as per equation (19);
Calculate pt∗i as per equation (21);
if Rm(x) > 1 then

Calculate utm as per equation (24);
else if Rm(x) < 1 then

Calculate utm as per equation (25);
end if

end for
Calculate ut as per equation (28);

As per equation (32) update discrete replicator;
until (

∣∣utm(x)− ut(x)
∣∣ > C);

and when Bts,m is greater than the demand Dm, the welfare
function of EV is given as

W
(
ptm, ξ

t
m

)
= U

(
ptm, ξ

t
m

)
+$t

mDm (35)

The total electricity sold and its price is included in the
solution of the game and is also called as Nash equilibrium
(NE). There are some set of conditions that need to be satisfied
for the NE to exist in the NCGT. First, the set of players
should be finite. Here we have M EVs, so this condition
is always satisfied. For a fixed value of price i.e., $t

m, the
welfare W(ptm, ξ

t
m) changes and buyers can purchase all the

power available for export. If Bts,m is greater than the demand
Dm, then

∂2W(ptm, ξ
t
m)

∂ ($t
m)

2 = −2ξtm

N∑
n=1

1

κn
< 0 (36)

When Bts,m is less than or equal to the demand Dm, then

∂2W(ptm, ξ
t
m)

∂ ($t
m)

2 = 0 (37)

When all the demand of energy coming to EV Dm is com-
pleted or all the power Bts,m is sold, the game is stopped.

Using equations (35) and (36), we can say
∂2W(ptm,ξ

t
m)

∂($t
m)2

6 0.
Hence, the welfare functions are quasi-concave and continu-
ous. Therefore, we come to the conclusion that the NE among
EV exists in NCGT.

C. SGT Between EV and Grid

SGT can be used between the EVs as multiple leaders and
the grids as multiple followers. The output of the EGT i.e., the
probability of selecting a seller and the output of the NCGT
i.e., the price for energy are the inputs to the NCGT and
EGT, respectively. This relationship between EGT and NCGT
is established using SGT. An EV announces the price which

is received by all the grids and they participate in EGT. The
output of the EGT gives the probability of selecting a seller
which is used by EVs to acquire a NE and update their prices.
The NE can’t be obtained analytically since EVs are using
NCGT and all the EVs are unknown to each other. Therefore
Stackelberg equilibrium (SE) in SGT and NE among EVs is
reached with the help of an iterative algorithm. The strategy
followed by EV m to update its price is given as:

$t
m(y + 1) = $t

m(y) + σ2

(
Dm(y)−Bts,m

)
(38)

The criteria for its termination is given as:∣∣$t
m(y + 1)−$t

m(y)
∣∣ < C (39)

Equation (39) can also be written as:∣∣Dm(y)−Bts,m
∣∣ < C (40)

Algorithm 2 Algorithm for SE between EV and grid
Input: EVs strategy at the initial stage
Output: State of stackelberg equilibrium
for all t in T do

Initialize $t(1), $t
1(1), $t

2(1), $t
3(1), . . . , $t

m(1);
y = 0;
repeat

y = y + 1;
Run Algorithm 1
Calculate demand Dm(y) as per equation (20);
Send Dm(y) to every EV m
As per equation (38) and (40) update price of energy;

until (
∣∣Dm(y)−Bts,m

∣∣ > C);
end for

where C is a small positive number, σ2 is an adjustment
parameter, and y is the number of iterations. The first step in
energy trading is EVs announcing the price of energy, which
is then received by the grid, and then they play the EGT. Grids
reach equilibrium for the price announced by EVs using EGT,
and they send this information back to EVs. When EVs receive
this strategy from grids, they engage in a NCGT to update their
prices, and this is repeated until equilibrium is obtained. This
is how V2G energy trading takes place using game theory in
an effective manner.

VI. NUMERICAL ANALYSIS

A. Simulation Settings

For assessing the performance of energy trading in the V2G
community, the simulation results are presented in this section.
In our model, we have considered a community of 3 grids
and 10 EVs. Each EV is equipped with a PV solar system
and can trade energy with grids in exchange for iota tokens.
For one day T = {1, 2, ..., 24} is time under consideration.
The production profiles and load of EVs and grids are taken
from [47]. The buying and selling prices of electricity are
detremined based on the actual prices of electricity in the USA.
Charging and discharging power limits of the ESUs are set to
3kW . The charging and discharging efficiency of the ESUs
are set to 0.6 and 0.4, respectively.
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Fig. 3: PCR of all EVs.
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Fig. 4: PCR of all grids.

B. Performance Evaluation

Results generated by the methods used in the paper are
compared and evaluated in this section. Fig. 3 shows the Power
Consumption Ratio (PCR) of all Electric Vehicles at each hour
of the day. Meanwhile, Fig. 4 shows the PCR of all grids at
each hour of the day. It is important to study the PCR values
in order to understand the actual time when the model will be
highly in use. The demand and supply of energy and the rate at
which the energy has to be sold or bought is also dependent on
the production and consumption of energy. Electric Vehicles
can sell the excess energy when the value of PCR > 1 at
any time slot t ∈ T for i ∈ A. Grids can buy energy from
EVs when the value of PCR 6 1 at any time slot t ∈ T for
i ∈ A.

Fig. 5 shows the total amount of power (in kW) that
Electric Vehicles can export at any time t of the day. The
amount of energy over time that Electric Vehicles can sell to
grids depends on the amount of energy present with Electric
Vehicles after they meet their own requirements. It can be
observed from the graph that different electric vehicles have a
different amount of energy that they can sell at different times
of the day. It depends on the energy generated by the EV and
its requirements. Taxi vehicles might have less energy to sell
compared to personal vehicles that are used less often. Fig. 6
shows the amount of power (in kW) that grids imported from
Electric Vehicles. The amount of energy over time that the
grid buys from Electric Vehicles depends on the requirement
of the grid. Also, the grid can meet certain requirements by
itself as it also has its own generation from the PV panels
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Fig. 5: Total power that Electric Vehicle can export.
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Fig. 6: Total power imported by grids.

installed on buildings, roofs.
Fig. 7 shows the convergence characteristics of EGT versus

the number of iterations. It can be observed from the graph
that the Electric Vehicles initially change their energy price
over a few iterations and then stop changing the prices. The
change in price becomes stable once the EVs reach maximum
possible utility. The change in price by Electric Vehicles is
due to a change of their selection probability by the grid.
Once the price provided by the EVs becomes stable, the grid
submits the selection probability to the EVs, and the non-
cooperative game starts between the EVs to trade energy with
the grid. Fig. 8 shows the variations in the selection probability
of a grid for energy trade versus the number of iterations. It
can be observed from the graph that, in contrast to Electric
Vehicle, the probability that the grid selects Electric Vehicle 1
is increasing as the iterations increases. This is so because the
change in price by Electric Vehicle 1 is more convenient to
the grid compared to the change in price by Electric Vehicle
5. This makes the grid increase the probability of selecting
Electric Vehicle 1, and decrease the probability of selecting
Electric Vehicle 5. The traditional schemes do not have the
option of changing the prices as per demand and supply, and
therefore the overall revenue of both parties is low compared
to the proposed scheme, where both parties are allowed to
choose the best possible option.

Fig. 9 shows the change in supply to demand ratio of three
different Electric Vehicles versus the number of iterations. The
supply of energy is adjusted by the electric vehicles in such
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Fig. 8: Probability of selecting Electric Vehicles versus number
of Iterations.

a way that the supply to demand ratio Rm increases with the
iterations. The increase in the supply to demand ratio increases
the selection probability of the EVs and also increases the
overall revenue of the EVs.

Fig. 10 shows a comparison of the price given by five
Electric Vehicles in the first bid auction and proposed model.
It can be observed that the price given by electric vehicles is
reduced in the proposed model, which results in the welfare of
the grid. Since the genuine price is being offered by the EVs,
the selection probability by the grid increases. Therefore, the
overall welfare and revenue of the EVs are also enhanced.

Fig. 11 shows a change in price given by Electric Vehicles
versus the probability of Electric Vehicle selection versus
the number of iterations. It can be observed from the graph
that as the price given by Electric Vehicles decreases, the
probability of getting selected by the grid increases and vice-
versa. The values on the color map show the change in
color on the graph with the change in the value of price
by EVs.The yellow color shows the maximum price and
minimum selection probability, and the dark blue color shows
the minimum price and maximum selection probability.

VII. CONCLUSION

In this paper, we have proposed a scheme for trading energy
in V2G networks using iota as the distributed ledger. Three
game-theoretic models were applied for price competition
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Fig. 10: Comparison of Price between First Bid Auction and
Proposed Model.

among EVs and negotiation of selection between grids and
EVs. A tangle data structure is used for the purpose of
recording all the transactions in a secure manner. Moreover,
evolutionary game theory is proposed, which uses an iterative
algorithm that helps grids choose a suitable EV for energy
trading. Meanwhile, a non-cooperative game is used to allow
the EVs to compete with each other. Finally, Stackelberg game
is used to allow negotiation between the grid and EVs. In this
context, a Nash Equilibrium is acquired using these game-
theoretic models. Simulation results presented prove that the
proposed algorithm helps EVs and grids achieve a stable state,
where the revenue of both parties is enhanced. The work can
be further extended to G2V, G2G, and V2V networks.
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