
Blockchain based distributed control system
for Edge Computing

Alexandru Stanciu
National Institute for Research and Development in Informatics

Bucharest, Romania
alex@ici.ro

Abstract—Edge computing proposes a novel model for
providing computational resources close to end devices that are
connected to the network. It has numerous applications in Internet
of Things, as well as smart grids, healthcare, smart home, etc. This
paper presents ongoing research regarding the use of blockchain
technology as a platform hierarchical and distributed control
systems based on IEC 61499 standard. Hyperledger Fabric was
selected as the blockchain solution, where function blocks are to
be implemented as smart contracts on a supervisor level. The
integration with the edge nodes that perform on the executive level
responsible for actual process control is based on a micro-services
architecture where Docker containers implement function blocks,
and Kubernetes platform is used for orchestrating the execution
of containers across the edge resources.

Keywords—edge computing; IoT; blockchain; smart contracts;
hierarchical distributed control system

I. INTRODUCTION
The emergence of Internet connected smart devices which

can be accessed and controlled remotely via computer networks,
has raised the expectations for new and enhanced intelligent
computing services.

However, security and privacy of user’s data, and specific
requirements regarding personal data protection, have
challenged the effectiveness of the centralized computing model
available on the public cloud infrastructures. A new computing
model, with the emphasis on decentralization, and the
collaboration of individual work units to achieve a common
goal, has been devised for Internet of Things (IoT) applications,
and for other domains such as the smart grid, healthcare,
connected vehicles, etc.

The main characteristic of this model is that data processing
occurs at the edge of the network, as close as possible to the
smart device which both produce and consume the data, and the
need of powerful computing resources is limited [1].

Edge computing is a new paradigm dedicated to applications
that require minimal latency, and which must process large
quantity of data that is difficult to transfer over the network. As
the cloud services are not suitable for such use cases because of
the limited network bandwidth, security and privacy of data,
various solutions have been implemented to address computing
needs at the edge of the network.

There are similar concepts which have some overlap with
edge computing, like mobile cloud computing, which is
expected to have an external infrastructure (usually available as
cloud services) for data processing and storage for mobile
applications.

Another term used interchangeably with edge computing is
fog computing. It extends the cloud computing paradigm to the
edge of the network, thus enabling a new breed of applications
and services. Its main characteristics are: a) low latency and
location awareness; b) wide-spread geographical distribution; c)
mobility; d) very large number of nodes, e) predominant role of
wireless access, f) strong presence of streaming and real time
applications, g) heterogeneity. These characteristics make the
fog the appropriate platform for a number of critical Internet of
Things (IoT) services and applications, namely, connected
vehicle, smart grid, smart cities, and, in general, wireless sensors
and actuators networks [2].

We have investigated the blockchain technology as a
platform for edge computing in order to implement a distributed
control system based on IEC 61499 standard.

The rest of the paper is organized as follows. Section II
presents an overview of the edge computing architecture. IEC
61499 standard for distributed control system is reviewed in
Section III. In Section IV is discussed the blockchain
technology, and the current research regarding implementation
of function blocks as smart contracts and the integration within
the distributed control system. Related work is discussed in
Section V, and the conclusion are presented in the final section.

II. EDGE COMPUTING ARCHITECTURE OVERVIEW
For many IoT applications which require mobility support,

location awareness and low latency, there is a need of a new
platform, one which can provide computational resources to
both large-scale sensor networks which monitor the
environment, as well as intelligent services based on data
processing and cloud resources integration.

Edge computing nodes can be seen as members of a
decentralized network which provides compute, storage and
networking services to end devices.

Since smart devices are usually inadequate in computation
power, battery, storage and bandwidth, IoT applications and
services are usually backed up by strong server backends, which

2017 21st International Conference on Control Systems and Computer Science

2379-0482/17 $31.00 © 2017 IEEE

DOI 10.1109/CSCS.2017.102

667

are mostly deployed in the cloud, since cloud computing is
considered as a promising solution to deliver services to end
users and provide applications with elastic resources at low cost
[3].

Edge computing has not replaced the need for cloud
computing services. Sometimes, it is necessary to integrate
cloud resources in a three-layer architecture which is based on
devices, a mesh of edge nodes, and has cloud services on top. It
has several properties, such as its close distance to end users.

For latency sensitive applications, the computations must be
kept as close to the data as possible. Location-awareness is
another important property because intelligent services need to
use the context of the user to provide the best experience. For
data intensive applications, edge nodes can provide the first
steps for data processing, thus limiting the volume of data that
should be transferred to the central cloud services.

It can be argued that while the edge nodes provide
localization with context and low latency for data processing,
the cloud provides a central point of references which can
coordinate the edge nodes.

This three-tier model for edge computing is necessary
especially for data intensive applications by reducing the data
transfer and storage requirements. Data processing in the edge
nodes is thus extremely important for applications that produce
huge volumes of data, and which should provide real-time
response to end users.

Another interesting application domain for edge computing
is the smart grid. In order to measure and control the distribution
network, smart meters are deployed on the field. There is a
central system to control the grid infrastructure which gathers
and analyses the data received, and sends commands to adjust
any modifications with respect to supply and demand of
resources.

With edge computing, this central automation system, can be
integrated with a network of intelligent devices, in a hierarchical
control structure. This covers the geographical distribution of
the power grid and provides advanced services based on
integration between the central and local resources. The central
control structure on the higher level has a strategic role, whereas
the local control systems on the lower level are responsible for
the real-time operation of field resources.

This type of role separation in a hierarchical distributed
control system is used in the context of edge computing model
as a criterion for the selection of the level on which its
components are deployed. For example, as presented in Fig. 1,
the principal components that are involved in strategy decision
are placed on the higher level, and are implemented as smart
contracts in a blockchain provided as a cloud service. The rest
of the components are part of the lower level of the hierarchical
distributed control system, and are implemented on the edge
nodes (which are close to the processes to be controlled).

We will review in the next section the IEC 61499 standard
for distributed control systems, and will present our ongoing
work related to the usage of blockchain technology in order to
execute a critical part of distributed control algorithms in a
secure environment.

Fig. 1. Hierarchical distributed control system model for edge computing

III. IEC 61499 STANDARD FOR DISTRIBUTED CONTROL SYSTEMS
The IEC 61499 standard outlines a generic model for

distributed control systems, defining the architecture and the
compliance requirements for software tools.

The promising application areas of IEC 61499 include
flexible material handling systems, in particular airport baggage
handling, flexible reconfigurable manufacturing automation,
intelligent power distribution networks and smart grid, as well
as the wide range of embedded networked systems.

There were various attempts to create distributed control
systems, first by using Programmable Logic Controllers (PLCs)
to centrally process collected data from field area networks.
After that, it was experimented the integration of PLCs via
networks, and then, by genuinely distributed automation
development, where the intelligence is designed from the very
beginning as decentralized and embedded into software
components, which can be freely distributed across networked
hardware devices [4].

The IEC 61499 standard has been designed to support
distributed automation control systems. The main component is
the function block (FB), which has been designed like a process
abstraction which is used in distributed computing systems - an
independent computational activity with its own set of variables
(context) and communication with other processes via
messages.

Function blocks which are the atomic units of execution in
IEC 61499 based systems, consists of two parts, a function block
interface and an execution control chart that operates over a set
of events and variables. The execution of a FB entails accepting
inputs from its interface, processing the inputs using the
algorithms selected by the execution control chart, and emitting
outputs.

Typically, an algorithm consists of loops, branching and
update statements, which are used to consume inputs and
generate outputs. The IEC 61499 standard allows algorithms to
be specified in a variety of implementation-dependent
languages.

Another function block type is the Service Interface
Function Block (SIFB). This represents the interface to low level
services provided by the operating system or hardware of the
embedded device, such as:

Cloud services
Blockchain

Edge nodes

Physical processes and devices

Hierarchical
distributed control

system

668

• Graphical User Interface (GUI) elements such as a input
fields and controls,

• Communication services,

• Interfaces to hardware devices.

Service interface function blocks (SIFB) can be considered
as device drivers that connect the external environment with
function block applications. IEC 61499 compliant software tools
and their associated runtime packages can provide a large
selection of GUI and communications SIFBs.

Device and resource models are used in the IEC 61499
standard to emulate the physical components (e.g. controllers,
sensors, actuators, etc.) as logical elements of the process
automation system. A conceptual model of the main entities and
the relationship between them is presented in Fig. 2.

A device model is the functional definition of a physical
component in a larger distributed system. Each device may
contain some inherent behaviour owing to its physical
subcomponents. In order to manage the complexity of devices,
the concept of resource models is used. A device may contain
zero or more resources encapsulating independent function or
tasks.

A resource represents an independent task executing on a
device. Such tasks are segregated from each other in such a way
that a particular system resource (e.g. a sensor or an actuator)
may only be accessed and operated upon by a single resource.
Due to the absence of shared variables, resources and devices
communicate using communication function blocks in order to
perform the coordination between tasks.

Fig. 2. A basic overview of IEC 61499 distributed control systems

Each device is capable of performing a set of different tasks
that coordinate by means of a communication network and, thus,
constitute a distributed system [5].

IV. USING BLOCKCHAIN BEYOND BITCOIN TRANSACTIONS

A blockchain is essentially a distributed database of records,
or public ledger of all transactions or digital events that have
been executed and shared among participating parties. Each
transaction in the public ledger is verified by consensus of a
majority of the participants in the system. Once entered,
information can never be erased. The blockchain contains a
certain and verifiable record of every single transaction ever
made. Bitcoin, the decentralized peer-to-peer digital currency, is
the most popular example that uses blockchain technology [6].

Blockchains allow us to have a distributed peer-to-peer
network where non-trusting members can interact with each
other without a trusted intermediary, in a verifiable manner.

Within the blockchain context, smart contracts are scripts
stored on the blockchain. (They can be thought of as roughly
analogous to stored procedures in relational database
management systems). Since they reside on the chain, they have
a unique address.

A smart contract can be triggered by addressing a transaction
to it. It then executes independently and automatically in a
prescribed manner on every node in the network, according to
the data that was included in the triggering transaction. (This
implies that every node in a smart contract enabled blockchain
is running a virtual machine (VM), and that the blockchain
network acts as a distributed VM) [7].

A. Hyperledger Fabric
Hyperledger Fabric (github.com/hyperledger/fabric) is an

implementation of a distributed ledger platform for running
smart contracts, leveraging familiar and proven technologies,
with a modular architecture allowing pluggable
implementations of various functions. It is one of multiple
projects currently in incubation under the Hyperledger Project.

The distributed ledger protocol of the fabric is run by peers.
The fabric distinguishes between two kinds of peers: A
validating peer is a node on the network responsible for running
consensus, validating transactions, and maintaining the ledger.
On the other hand, a non-validating peer is a node that functions
as a proxy to connect clients (issuing transactions) to validating
peers. A non-validating peer does not execute transactions but it
may verify them.

The Hyperledger Fabric is a permissioned blockchain
platform aimed at business use. It is open-source and based on
standards, runs user-defined smart contracts, supports strong
security and identity features, and uses a modular architecture
with pluggable consensus protocols [8].

B. Experimental testbed specifications
The use case that is the subject of our investigation on the

topic of distributed control systems is related to the PID control
of dynamic systems.

The three-tier edge computing model can be used to design
the components of the PID controller on the lower level, and
include on the higher-level elements that are responsible for the
selection of algorithms and methods dedicated to the fine tuning
of the controller parameters.

In order to experiment the execution of a distributed control
system based on IEC 61499 standard on edge computing nodes
an adapted environment from the Calculos project [9] was
proposed. The aim of Calculos was to design and implement an
open platform for cloud services which can provide modeling
and optimization with complex algorithms standardized as
function blocks, according to the IEC 61499 model, in order to
be compatible, and usable in any control system.

The high-level architecture of the distributed control system
is presented in Fig. 3. As Function Blocks are implemented in

FB

SIFB

FB

FB
SIFB

network

FB

SIFB
FB

FB

SIFB

resource

resource

669

Docker containers, Kubernetes platform is used for
orchestrating the execution of containers across the edge nodes.

Each FB has its control algorithms and execution logic
implemented in a Python program which is packaged together
with its dependencies in a container image. FBs communicate
(events and data) using a publish/subscribe mechanism via a
broker which is based on Redis message broker.

IEC 61499 resources which can contain several FBs are
implemented as Pods - a Kubernetes specific abstraction
dedicated to a group of linked containers, where inside a Pod,
each container can access any other containers.

Fig. 3. High level architecture of IEC 61499 components deployed as Docker
containers with Kubernetes platform

The process interface and the user interface of the IEC 61499
control system are designed as REST APIs implemented by
Service Interface Function Blocks (SIFB). An IEC 61499
Device contains one or more Resources which should be able to
communicate among each other via SIFBs.

Kubernetes allows the definition of services as objects which
expose Pods resources. These Kubernetes services provide the
REST interface to Resources, and they are the basis for a micro-
service architecture. Each Resource implements a specific
functionality of the distributed control system, and all the
Resources are loosely coupled in a message based architecture.

The Docker containers are deployed on edge nodes in
addition to Hyperledger Fabric validating nodes. This
architecture emulates the three tier edge computing model:
physical devices and processes, edge nodes and cloud services.
The blockchain is deployed on the top level to ensure that
transactions are secured and properly validated. The blockchain
can execute smart contracts which are implemented in Go
language, and thus the function blocks are designed as smart
contracts that enforce the user decisions concerning high-level
strategies employed in the process automation system.

One very important aspect which must be considered is that
smart contracts cannot access outside data, such as remote APIs
or services. In order to be able to achieve consensus among
blockchain nodes, the execution must be deterministic.

The workaround this problem is based on special
decentralized blockchain application which are used to push
data into the blockchain, so that other smart contracts can
consume it, and transfer data to the outside world. These special

applications are the equivalent of the SIFB in the IEC 61499
standard.

We have evaluated the performance of Hyperledger Fabric
v0.6 regarding the number of transactions (invoke and query
transaction types) executed per second (tps). For this
benchmarking, we have used the following Google Cloud
Platform resources:

• n1-standard-4, a machine type with 4 vCPUs and 15 GB
memory, which was able to execute 186 tps (query
transactions) and 291 tps (invoke transactions).

• n1-standard-2, a machine type with 2 vCPUs and 7.5 GB
memory, which executed 170 tps (query transactions)
and 255 tps (invoke transactions).

The performance benchmarking was performed with
hyperledger-py tool against a cluster of 4 validating nodes that
use Practical Byzantine Fault Tolerance consensus.

 These numbers show that higher level of the distributed
control system which is based on the blockchain technology has
a clear limitation regarding the load that can be effectively
processed in real time. However, as the role of this layer is to
monitor and supervise the lower level, it is reasonable to expect
that number of function block that are executed as smart
contracts to be a small fraction of the total number of the
function blocks that compose the automation system.

In addition, as the strategic decisions are based on the
evaluation of expected performance and related costs, the
importance of a secure medium to keep and execute these
transactions is underlined by the possibility to automatically
enforce operational rules specified by users, and encoded in
smart contracts.

V. RELATED WORK
Moving IoT components from the cloud onto edge hosts

helps in reducing overall network traffic and thus minimizes
latency. However, provisioning IoT services on the IoT edge
devices presents new challenges regarding system design and
maintenance. One possible approach is the use of software
defined IoT components in the form of virtual IoT resources.
This, in turn, allows exposing the thing/device layer and the core
IoT service layer as collections of micro services that can be
distributed to a broad range of hosts. In [10] was investigated the
concept of software-defined IoT components called virtual
resources and the use permission-based blockchains as a means
for distribution.

A new secure, private, and lightweight architecture for IoT,
based on blockchain technology that eliminates the overhead
while maintaining most of its security and privacy benefits was
investigated on a smart home application as a representative case
study for broader IoT applications. The proposed architecture
was hierarchical, and consists of smart homes, an overlay
network and cloud storages coordinating data transactions with
blockchain to provide privacy and security [11].

An approach for developing a campus-wide sensor network
using commodity single board computers (Raspberry Pi) was
presented in [12]. Edge computation is made of per-node event
triggers, that are defined and monitored on each sensor device

Resource

FB FB

FBRedis

SIFB

REST

Resource

FB FB

FBRedis

SIFB

REST
Device

pub
/sub

pub
/sub

Pod Pod

Service Service

670

directly. Further compute tasks might include local aggregation
of data such as map/reduce or per-node user queries executing
on-device.

A framework supporting context-aware sensing, computing
and communication capabilities into industrial applications was
introduced in [13]. The solution provides context information
sensing and processing, an access mechanism for interfacing
sensor networks with IoT and cloud services and a four-level
architecture to perform industrial process control that includes
the modules of a context-aware control platform.

In [14] was presented an evaluation of Docker as an edge
computing platform based on four requirements: deployment
and termination; resource & service management; fault
tolerance and caching. Due to its small footprint, good
performance and fast deployments, it was assessed that Docker
could be a viable Edge computing platform.

VI. CONCLUSIONS
Edge computing proposes a novel model for providing

computational resources close to end devices that are connected
to the network. It has numerous applications in Internet of
Things, as well as smart grids, healthcare, smart home, etc. One
important feature of edge computing is that the centralized
computing model based on cloud services is augmented with a
decentralized network of nodes that create an intermediate layer
between the sensors and devices and cloud services. For data
intensive applications, it has the benefit of reduced data transfers
and increased responsiveness.

For many IoT applications, a distributed automation system
can be implemented as a hierarchical structure with two tiers,
with the higher level performing supervision and strategic
decisions, and the lower level having direct control of devices
and processes.

We have investigated the IEC 61499 standard for distributed
control systems, and have presented the ongoing research
regarding the implementation of function blocks as smart
contracts executed by the blockchain on a supervision level, as
well as the integration with the edge nodes that perform the
executive level responsible for process control.

ACKNOWLEDGMENT
This work was partly supported by the Romanian National

Research Programme PNII project “Cloud Architecture for an
open Library of Complex re-Usable Logical function blocks for
Optimized Systems – CALCULOS”, and by Nucleu project PN
16090401 “Evaluation and experimentation of Internet of
Things platforms”.

REFERENCES
[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge computing: Vision and

challenges," IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646,
2016.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its
role in the internet of things," in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, 2012, pp. 13-16: ACM.

[3] S. Yi, Z. Hao, Z. Qin, and Q. Li, "Fog computing: Platform and
applications," in Hot Topics in Web Systems and Technologies (HotWeb),
2015 Third IEEE Workshop on, 2015, pp. 73-78: IEEE.

[4] V. Vyatkin, "IEC 61499 as enabler of distributed and intelligent
automation: State-of-the-art review," IEEE Transactions on Industrial
Informatics, vol. 7, no. 4, pp. 768-781, 2011.

[5] L. H. Yoong, P. S. Roop, Z. E. Bhatti, and M. M. Kuo, Model-Driven
Design Using IEC 61499. Springer, 2015.

[6] M. Crosby, P. Pattanayak, S. Verma, and V. Kalyanaraman, "Blockchain
technology: Beyond bitcoin," Applied Innovation, vol. 2, pp. 6-10, 2016.

[7] K. Christidis and M. Devetsikiotis, "Blockchains and Smart Contracts for
the Internet of Things," IEEE Access, vol. 4, pp. 2292-2303, 2016.

[8] C. Cachin, "Architecture of the Hyperledger blockchain fabric," in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[9] O. Chenaru, G. Florea, A. Stanciu, V. Sima, D. Popescu, and R. Dobrescu,
"Modeling Complex Industrial Systems Using Cloud Services," in
Control Systems and Computer Science (CSCS), 2015 20th International
Conference on, 2015, pp. 565-571: IEEE.

[10] M. Samaniego and R. Deters, "Using Blockchain to push Software-
Defined IoT Components onto Edge Hosts," in Proceedings of the
International Conference on Big Data and Advanced Wireless
Technologies, 2016, p. 58: ACM.

[11] A. Dorri, S. S. Kanhere, and R. Jurdak, "Blockchain in internet of things:
Challenges and Solutions," arXiv preprint arXiv:1608.05187, 2016.

[12] K. Hentschel, D. Jacob, J. Singer, and M. Chalmers, "Supersensors:
Raspberry Pi Devices for Smart Campus Infrastructure," in Future
Internet of Things and Cloud (FiCloud), 2016 IEEE 4th International
Conference on, 2016, pp. 58-62: IEEE.

[13] D. Merezeanu, G. Vasilescu, and R. Dobrescu, "Context-aware Control
Platform for Sensor Network Integration in IoT and Cloud," STUDIES IN
INFORMATICS AND CONTROL, vol. 25, no. 4, pp. 489-498, 2016.

[14] B. I. Ismail et al., "Evaluation of docker as edge computing platform," in
Open Systems (ICOS), 2015 IEEE Confernece on, 2015, pp. 130-135:
IEEE.

671

