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Abstract—Edge computing proposes a novel model for 
providing computational resources close to end devices that are 
connected to the network. It has numerous applications in Internet 
of Things, as well as smart grids, healthcare, smart home, etc. This 
paper presents ongoing research regarding the use of blockchain 
technology as a platform hierarchical and distributed control 
systems based on IEC 61499 standard. Hyperledger Fabric was 
selected as the blockchain solution, where function blocks are to 
be implemented as smart contracts on a supervisor level. The 
integration with the edge nodes that perform on the executive level 
responsible for actual process control is based on a micro-services 
architecture where Docker containers implement function blocks, 
and Kubernetes platform is used for orchestrating the execution 
of containers across the edge resources. 

Keywords—edge computing; IoT; blockchain; smart contracts; 
hierarchical distributed control system 

I. INTRODUCTION 
The emergence of Internet connected smart devices which 

can be accessed and controlled remotely via computer networks, 
has raised the expectations for new and enhanced intelligent 
computing services.  

However, security and privacy of user’s data, and specific 
requirements regarding personal data protection, have 
challenged the effectiveness of the centralized computing model 
available on the public cloud infrastructures. A new computing 
model, with the emphasis on decentralization, and the 
collaboration of individual work units to achieve a common 
goal, has been devised for Internet of Things (IoT) applications, 
and for other domains such as the smart grid, healthcare, 
connected vehicles, etc.  

The main characteristic of this model is that data processing 
occurs at the edge of the network, as close as possible to the 
smart device which both produce and consume the data, and the 
need of powerful computing resources is limited [1]. 

Edge computing is a new paradigm dedicated to applications 
that require minimal latency, and which must process large 
quantity of data that is difficult to transfer over the network. As 
the cloud services are not suitable for such use cases because of 
the limited network bandwidth, security and privacy of data, 
various solutions have been implemented to address computing 
needs at the edge of the network. 

There are similar concepts which have some overlap with 
edge computing, like mobile cloud computing, which is 
expected to have an external infrastructure (usually available as 
cloud services) for data processing and storage for mobile 
applications.  

Another term used interchangeably with edge computing is 
fog computing. It extends the cloud computing paradigm to the 
edge of the network, thus enabling a new breed of applications 
and services. Its main characteristics are: a) low latency and 
location awareness; b) wide-spread geographical distribution; c) 
mobility; d) very large number of nodes, e) predominant role of 
wireless access, f) strong presence of streaming and real time 
applications, g) heterogeneity. These characteristics make the 
fog the appropriate platform for a number of critical Internet of 
Things (IoT) services and applications, namely, connected 
vehicle, smart grid, smart cities, and, in general, wireless sensors 
and actuators networks [2]. 

We have investigated the blockchain technology as a 
platform for edge computing in order to implement a distributed 
control system based on IEC 61499 standard. 

The rest of the paper is organized as follows. Section II 
presents an overview of the edge computing architecture. IEC 
61499 standard for distributed control system is reviewed in 
Section III. In Section IV is discussed the blockchain 
technology, and the current research regarding implementation 
of function blocks as smart contracts and the integration within 
the distributed control system. Related work is discussed in 
Section V, and the conclusion are presented in the final section. 

II. EDGE COMPUTING ARCHITECTURE OVERVIEW 
For many IoT applications which require mobility support, 

location awareness and low latency, there is a need of a new 
platform, one which can provide computational resources to 
both large-scale sensor networks which monitor the 
environment, as well as intelligent services based on data 
processing and cloud resources integration. 

Edge computing nodes can be seen as members of a 
decentralized network which provides compute, storage and 
networking services to end devices. 

Since smart devices are usually inadequate in computation 
power, battery, storage and bandwidth, IoT applications and 
services are usually backed up by strong server backends, which 
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are mostly deployed in the cloud, since cloud computing is 
considered as a promising solution to deliver services to end 
users and provide applications with elastic resources at low cost 
[3]. 

Edge computing has not replaced the need for cloud 
computing services. Sometimes, it is necessary to integrate 
cloud resources in a three-layer architecture which is based on 
devices, a mesh of edge nodes, and has cloud services on top. It 
has several properties, such as its close distance to end users.  

For latency sensitive applications, the computations must be 
kept as close to the data as possible. Location-awareness is 
another important property because intelligent services need to 
use the context of the user to provide the best experience. For 
data intensive applications, edge nodes can provide the first 
steps for data processing, thus limiting the volume of data that 
should be transferred to the central cloud services. 

It can be argued that while the edge nodes provide 
localization with context and low latency for data processing, 
the cloud provides a central point of references which can 
coordinate the edge nodes. 

This three-tier model for edge computing is necessary 
especially for data intensive applications by reducing the data 
transfer and storage requirements. Data processing in the edge 
nodes is thus extremely important for applications that produce 
huge volumes of data, and which should provide real-time 
response to end users. 

Another interesting application domain for edge computing 
is the smart grid. In order to measure and control the distribution 
network, smart meters are deployed on the field. There is a 
central system to control the grid infrastructure which gathers 
and analyses the data received, and sends commands to adjust 
any modifications with respect to supply and demand of 
resources.  

With edge computing, this central automation system, can be 
integrated with a network of intelligent devices, in a hierarchical 
control structure. This covers the geographical distribution of 
the power grid and provides advanced services based on 
integration between the central and local resources. The central 
control structure on the higher level has a strategic role, whereas 
the local control systems on the lower level are responsible for 
the real-time operation of field resources.  

This type of role separation in a hierarchical distributed 
control system is used in the context of edge computing model 
as a criterion for the selection of the level on which its 
components are deployed. For example, as presented in Fig. 1, 
the principal components that are involved in strategy decision 
are placed on the higher level, and are implemented as smart 
contracts in a blockchain provided as a cloud service. The rest 
of the components are part of the lower level of the hierarchical 
distributed control system, and are implemented on the edge 
nodes (which are close to the processes to be controlled). 

We will review in the next section the IEC 61499 standard 
for distributed control systems, and will present our ongoing 
work related to the usage of blockchain technology in order to 
execute a critical part of distributed control algorithms in a 
secure environment. 

Fig. 1. Hierarchical distributed control system model for edge computing 

III. IEC 61499 STANDARD FOR DISTRIBUTED CONTROL SYSTEMS 
The IEC 61499 standard outlines a generic model for 

distributed control systems, defining the architecture and the 
compliance requirements for software tools.  

The promising application areas of IEC 61499 include 
flexible material handling systems, in particular airport baggage 
handling, flexible reconfigurable manufacturing automation, 
intelligent power distribution networks and smart grid, as well 
as the wide range of embedded networked systems.  

There were various attempts to create distributed control 
systems, first by using Programmable Logic Controllers (PLCs) 
to centrally process collected data from field area networks. 
After that, it was experimented the integration of PLCs via 
networks, and then, by genuinely distributed automation 
development, where the intelligence is designed from the very 
beginning as decentralized and embedded into software 
components, which can be freely distributed across networked 
hardware devices [4]. 

The IEC 61499 standard has been designed to support 
distributed automation control systems. The main component is 
the function block (FB), which has been designed like a process 
abstraction which is used in distributed computing systems - an 
independent computational activity with its own set of variables 
(context) and communication with other processes via 
messages. 

Function blocks which are the atomic units of execution in 
IEC 61499 based systems, consists of two parts, a function block 
interface and an execution control chart that operates over a set 
of events and variables. The execution of a FB entails accepting 
inputs from its interface, processing the inputs using the 
algorithms selected by the execution control chart, and emitting 
outputs. 

Typically, an algorithm consists of loops, branching and 
update statements, which are used to consume inputs and 
generate outputs. The IEC 61499 standard allows algorithms to 
be specified in a variety of implementation-dependent 
languages. 

Another function block type is the Service Interface 
Function Block (SIFB). This represents the interface to low level 
services provided by the operating system or hardware of the 
embedded device, such as: 
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• Graphical User Interface (GUI) elements such as a input 
fields and controls, 

• Communication services, 

• Interfaces to hardware devices. 

Service interface function blocks (SIFB) can be considered 
as device drivers that connect the external environment with 
function block applications. IEC 61499 compliant software tools 
and their associated runtime packages can provide a large 
selection of GUI and communications SIFBs. 

Device and resource models are used in the IEC 61499 
standard to emulate the physical components (e.g. controllers, 
sensors, actuators, etc.) as logical elements of the process 
automation system. A conceptual model of the main entities and 
the relationship between them is presented in Fig. 2. 

A device model is the functional definition of a physical 
component in a larger distributed system. Each device may 
contain some inherent behaviour owing to its physical 
subcomponents. In order to manage the complexity of devices, 
the concept of resource models is used. A device may contain 
zero or more resources encapsulating independent function or 
tasks. 

A resource represents an independent task executing on a 
device. Such tasks are segregated from each other in such a way 
that a particular system resource (e.g. a sensor or an actuator) 
may only be accessed and operated upon by a single resource. 
Due to the absence of shared variables, resources and devices 
communicate using communication function blocks in order to 
perform the coordination between tasks. 

Fig. 2. A basic overview of IEC 61499 distributed control systems 

Each device is capable of performing a set of different tasks 
that coordinate by means of a communication network and, thus, 
constitute a distributed system [5]. 

IV. USING BLOCKCHAIN BEYOND BITCOIN TRANSACTIONS

A blockchain is essentially a distributed database of records, 
or public ledger of all transactions or digital events that have 
been executed and shared among participating parties. Each 
transaction in the public ledger is verified by consensus of a 
majority of the participants in the system. Once entered, 
information can never be erased. The blockchain contains a 
certain and verifiable record of every single transaction ever 
made. Bitcoin, the decentralized peer-to-peer digital currency, is 
the most popular example that uses blockchain technology [6]. 

Blockchains allow us to have a distributed peer-to-peer 
network where non-trusting members can interact with each 
other without a trusted intermediary, in a verifiable manner. 

Within the blockchain context, smart contracts are scripts 
stored on the blockchain. (They can be thought of as roughly 
analogous to stored procedures in relational database 
management systems). Since they reside on the chain, they have 
a unique address.   

A smart contract can be triggered by addressing a transaction 
to it. It then executes independently and automatically in a 
prescribed manner on every node in the network, according to 
the data that was included in the triggering transaction. (This 
implies that every node in a smart contract enabled blockchain 
is running a virtual machine (VM), and that the blockchain 
network acts as a distributed VM) [7]. 

A. Hyperledger Fabric 
Hyperledger Fabric (github.com/hyperledger/fabric) is an 

implementation of a distributed ledger platform for running 
smart contracts, leveraging familiar and proven technologies, 
with a modular architecture allowing pluggable 
implementations of various functions. It is one of multiple 
projects currently in incubation under the Hyperledger Project. 

The distributed ledger protocol of the fabric is run by peers. 
The fabric distinguishes between two kinds of peers: A 
validating peer is a node on the network responsible for running 
consensus, validating transactions, and maintaining the ledger. 
On the other hand, a non-validating peer is a node that functions 
as a proxy to connect clients (issuing transactions) to validating 
peers. A non-validating peer does not execute transactions but it 
may verify them. 

The Hyperledger Fabric is a permissioned blockchain 
platform aimed at business use. It is open-source and based on 
standards, runs user-defined smart contracts, supports strong 
security and identity features, and uses a modular architecture 
with pluggable consensus protocols [8]. 

B. Experimental testbed specifications 
The use case that is the subject of our investigation on the 

topic of distributed control systems is related to the PID control 
of dynamic systems. 

The three-tier edge computing model can be used to design 
the components of the PID controller on the lower level, and 
include on the higher-level elements that are responsible for the 
selection of algorithms and methods dedicated to the fine tuning 
of the controller parameters. 

In order to experiment the execution of a distributed control 
system based on IEC 61499 standard on edge computing nodes 
an adapted environment from the Calculos project [9] was 
proposed. The aim of Calculos was to design and implement an 
open platform for cloud services which can provide modeling 
and optimization with complex algorithms standardized as 
function blocks, according to the IEC 61499 model, in order to 
be compatible, and usable in any control system. 

The high-level architecture of the distributed control system 
is presented in Fig. 3. As Function Blocks are implemented in 
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Docker containers, Kubernetes platform is used for 
orchestrating the execution of containers across the edge nodes. 

Each FB has its control algorithms and execution logic 
implemented in a Python program which is packaged together 
with its dependencies in a container image. FBs communicate 
(events and data) using a publish/subscribe mechanism via a 
broker which is based on Redis message broker. 

IEC 61499 resources which can contain several FBs are 
implemented as Pods - a Kubernetes specific abstraction 
dedicated to a group of linked containers, where inside a Pod, 
each container can access any other containers. 

Fig. 3. High level architecture of IEC 61499 components deployed as Docker 
containers with Kubernetes platform 

The process interface and the user interface of the IEC 61499 
control system are designed as REST APIs implemented by 
Service Interface Function Blocks (SIFB). An IEC 61499 
Device contains one or more Resources which should be able to 
communicate among each other via SIFBs.  

Kubernetes allows the definition of services as objects which 
expose Pods resources. These Kubernetes services provide the 
REST interface to Resources, and they are the basis for a micro-
service architecture. Each Resource implements a specific 
functionality of the distributed control system, and all the 
Resources are loosely coupled in a message based architecture.  

The Docker containers are deployed on edge nodes in 
addition to Hyperledger Fabric validating nodes. This 
architecture emulates the three tier edge computing model: 
physical devices and processes, edge nodes and cloud services. 
The blockchain is deployed on the top level to ensure that 
transactions are secured and properly validated. The blockchain 
can execute smart contracts which are implemented in Go 
language, and thus the function blocks are designed as smart 
contracts that enforce the user decisions concerning high-level 
strategies employed in the process automation system.   

One very important aspect which must be considered is that 
smart contracts cannot access outside data, such as remote APIs 
or services. In order to be able to achieve consensus among 
blockchain nodes, the execution must be deterministic.  

The workaround this problem is based on special 
decentralized blockchain application which are used to push 
data into the blockchain, so that other smart contracts can 
consume it, and transfer data to the outside world. These special 

applications are the equivalent of the SIFB in the IEC 61499 
standard. 

We have evaluated the performance of Hyperledger Fabric 
v0.6 regarding the number of transactions (invoke and query 
transaction types) executed per second (tps). For this 
benchmarking, we have used the following Google Cloud 
Platform resources: 

• n1-standard-4, a machine type with 4 vCPUs and 15 GB 
memory, which was able to execute 186 tps (query 
transactions) and 291 tps (invoke transactions). 

• n1-standard-2, a machine type with 2 vCPUs and 7.5 GB 
memory, which executed 170 tps (query transactions) 
and 255 tps (invoke transactions). 

The performance benchmarking was performed with 
hyperledger-py tool against a cluster of 4 validating nodes that 
use Practical Byzantine Fault Tolerance consensus. 

 These numbers show that higher level of the distributed 
control system which is based on the blockchain technology has 
a clear limitation regarding the load that can be effectively 
processed in real time. However, as the role of this layer is to 
monitor and supervise the lower level, it is reasonable to expect 
that number of function block that are executed as smart 
contracts to be a small fraction of the total number of the 
function blocks that compose the automation system. 

In addition, as the strategic decisions are based on the 
evaluation of expected performance and related costs, the 
importance of a secure medium to keep and execute these 
transactions is underlined by the possibility to automatically 
enforce operational rules specified by users, and encoded in 
smart contracts.  

V. RELATED WORK 
Moving IoT components from the cloud onto edge hosts 

helps in reducing overall network traffic and thus minimizes 
latency. However, provisioning IoT services on the IoT edge 
devices presents new challenges regarding system design and 
maintenance. One possible approach is the use of software 
defined IoT components in the form of virtual IoT resources. 
This, in turn, allows exposing the thing/device layer and the core 
IoT service layer as collections of micro services that can be 
distributed to a broad range of hosts. In [10] was investigated the 
concept of software-defined IoT components called virtual 
resources and the use permission-based blockchains as a means 
for distribution.  

A new secure, private, and lightweight architecture for IoT, 
based on blockchain technology that eliminates the overhead 
while maintaining most of its security and privacy benefits was 
investigated on a smart home application as a representative case 
study for broader IoT applications. The proposed architecture 
was hierarchical, and consists of smart homes, an overlay 
network and cloud storages coordinating data transactions with 
blockchain to provide privacy and security [11]. 

An approach for developing a campus-wide sensor network 
using commodity single board computers (Raspberry Pi) was 
presented in [12]. Edge computation is made of per-node event 
triggers, that are defined and monitored on each sensor device 
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directly. Further compute tasks might include local aggregation 
of data such as map/reduce or per-node user queries executing 
on-device. 

A framework supporting context-aware sensing, computing 
and communication capabilities into industrial applications was 
introduced in [13]. The solution provides context information 
sensing and processing, an access mechanism for interfacing 
sensor networks with IoT and cloud services and a four-level 
architecture to perform industrial process control that includes 
the modules of a context-aware control platform. 

In [14] was presented an evaluation of Docker as an edge 
computing platform based on four requirements: deployment 
and termination; resource & service management; fault 
tolerance and caching. Due to its small footprint, good 
performance and fast deployments, it was assessed that Docker 
could be a viable Edge computing platform.  

VI. CONCLUSIONS 
Edge computing proposes a novel model for providing 

computational resources close to end devices that are connected 
to the network. It has numerous applications in Internet of 
Things, as well as smart grids, healthcare, smart home, etc. One 
important feature of edge computing is that the centralized 
computing model based on cloud services is augmented with a 
decentralized network of nodes that create an intermediate layer 
between the sensors and devices and cloud services. For data 
intensive applications, it has the benefit of reduced data transfers 
and increased responsiveness. 

For many IoT applications, a distributed automation system 
can be implemented as a hierarchical structure with two tiers, 
with the higher level performing supervision and strategic 
decisions, and the lower level having direct control of devices 
and processes. 

We have investigated the IEC 61499 standard for distributed 
control systems, and have presented the ongoing research 
regarding the implementation of function blocks as smart 
contracts executed by the blockchain on a supervision level, as 
well as the integration with the edge nodes that perform the 
executive level responsible for process control. 
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