
Survivable Interaction Distribution Networks

Shun-Yun Hu
Institute of Information Science

Academia Sinica
Taiwan, R.O.C.

Email: syhu@iis.sinica.edu.tw

Abstract—Interaction Distribution Networks (IDNs) are sys-
tems designed to deliver small, interactive data streams in a
scalable manner. Compared with Content Distribution Network
(CDN), which serves relatively static and bulky data, IDNs may
be more suited for latency-sensitive bi-directional interactive
streams such as network games or real-time conferencing.

Although existing instant messenger (IM) or massively mul-
tiplayer online games (MMOGs) may be considered as early
forms of IDNs, we envision IDNs as capable to serve new forms
of scalable interactions to different applications at affordable
costs. Designing IDNs that are both scalable and reliable thus is
important. This paper discusses the survivability of IDNs and
the design measures that can be taken, to ensure that an IDN
may still survive hardware and software malfunctions, when
deployed on a large scale.

Keywords-publish/subscribe, virtual environment, instant
messenger, interaction, survivability

I. INTRODUCTION

The Internet was designed as a scalable system suitable
for various data flow. Since the creation of World Wide Web
(WWW), information in the forms of web pages, pictures,
videos, etc., has become much more easier to access, share,
and store. However, besides information, another major
function of the Internet—-real-time interactions—-still has
much to explore.

Currently there are deployed systems that support real-
time interactions for millions of concurrent users. Most
notably are the instant messenger (IM) [1] networks such as
Yahoo Messenger, AIM, MSN, and Skype. However, most
of the interactions occurred on IM networks are within a
small group (i.e., between two to a few tens). Another type
of large-scale interactions occurs in Massively Multiplayer
Online Games (MMOGs) [2] such as World of Warcraft or
social virtual worlds such as Second Life [3]. However,
while the total concurrent users can be impressive (e.g.,
World of Warcraft has reported over a million concurrent
users [4], and Second Life has around 90,000 peak con-
current users in the entire virtual world [5]), the scale of
interactions within these systems are typically within 100
users for a given region / scene / interaction group.

It is therefore not yet possible, to hold live events on a
large scale on the Internet. For example, a popular lecture
attended by thousands and anyone from the audience can
ask live questions; a rock concert with tens of thousands

of participants who can engage and feel the atmosphere of
being with the star; or a gathering of emergency rescuers
immediately after a natural disaster, for briefing and discus-
sions on how to proceed with the rescue. These large-scale
interactions currently can only happen in the physical world,
when a large enough physical space is provided, and all
participants of the event have gathered at the same place. The
requirement of physical presence, has more or less limited
the number of potential participants and the occurrences of
such events. On the other hand, if a general mechanism
to support large-scale interactions were available on the
Internet, we may see fundamental and widespread changes in
how people interact, from music concerts to political rallies.

We postulate that there are some fundamental similarities
between IM and MMOG systems, and systems that support
real-time interactions in general. Once identified, we can
design and extend such interaction distribution networks
(IDNs) [6] to support real-time interactions in a more
scalable and flexible manner. Similar to existing content
distribution networks (CDNs) [7], which serve content files
such as web pages, audio and video streams on massive
scales, once IDNs can be constructed, they may also serve
interactions in a scalable manner. Unlike the uni-directional
data served by CDNs, however, the data served by IDNs
should be bi-directional interactive streams that come in
short bursts of small packets (instead of the relatively static,
and sometimes bulky content CDNs are designed to support).

In order for IDNs to be universally suitable for differ-
ent applications needs, the key requirements of IDNs are
interactivity, scalability, and generality [6]. However, for
any system designed to operate on a massive scale, it is
also important to consider its reliability, or survivability, in
face of hardware and software failures. In this paper, we
propose that to fulfill this goal, it is important to consider
three main issues: functional redundancy, attack tolerance,
and inter-operability. We can borrow concepts from peer-to-
peer systems [8], where each unit has similar functionalities
(e.g., can be both a client and a server at the same time),
and a single point of failure is generally avoided.

In the rest of this paper, we first provide background on
IDN in Section II, and explain some IDN basics in Section
III. We describe key requirements for IDN survivability in
Section IV, and conclude this paper in Section V.

2011 11th IEEE International Conference on Computer and Information Technology

978-0-7695-4388-8/11 $26.00 © 2011 IEEE

DOI 10.1109/CIT.2011.81

654

2011 11th IEEE International Conference on Computer and Information Technology

978-0-7695-4388-8/11 $26.00 © 2011 IEEE

DOI 10.1109/CIT.2011.81

654

II. BACKGROUND

A. CDNs

Content Distribution Networks (CDNs) [9] are systems
designed to facilitate the delivery of web content. Soon
after the introduction of WWW, people discovered that web
servers may be overloaded and cease to function when high
popularity content existed (i.e., when flash crowd occurs for
a site). CDNs then were introduced to alleviate this problem
by redirecting original requests to one of the edge servers
closest to the requesting user. Content is replicated at the
edge servers and also synchronized whenever new content
becomes available. However, while CDNs account for a fair
amount of web traffic today, the data served is still mostly
static content in a uni-directional manner. Interactions, which
are bi-directional and may come in short bursts of packets,
are not primarily supported by CDNs.

B. IM and MMOG

The most deployed and largest interaction networks today
on the Internet may be the Instant Messenger (IM) networks,
where concurrent users can be in the range of tens of
millions for a given system [1]. Users generally need to
obtain a service-specific account, to login the system and
build their networks of friends and associates. Direct one-to-
one communication via text or voice are the most common
form of interactions, while small groups of tens of people
may also jointly participate in a group discussion. IMs may
find their precursors in Internet Relay Chat (IRC) channels,
which are operated via a network of volunteer service
providers. However, while successfully adopted, today’s IM
networks still support only small interaction groups (i.e.,
group size of a few tens, and less than 100 in general).
Architecturally, each interaction group is hosted on a specific
server, so the capacity of a given server may limit the number
of potential participants. The more bandwidth-intensive the
interaction, the smaller the group size (e.g., an IRC chatroom
can host over a hundred of users, while a Skype channel
typically can host only ten people). IM networks also do not
support interactions beyond simple message transmissions.

Massively Multiplayer Online Games (MMOGs) [2] on
the other hand, support more diverse forms of game-specific
interactions that include fighting, trading, building, or using
items, etc. Such additional capability is made possible by
having servers that execute specific game rules (or game
logic) given certain event messages and the current state of
the game, as stored in game objects. While architecturally
more flexible, the workload of an MMOG is often divided by
spatial partitioning of the virtual world, where each region is
assigned to a particular server to manage. Server overload
or underload (i.e., idling) thus can be common, given the
diverse distribution and density of users within the world
[10]. Group interactions are still limited to less than 100
users in general, to avoid CPU or bandwidth over-use.

C. Interest Management

One key to scale up MMOG systems is based on the
concept of interest management [11]. While the total number
of concurrent users in a system may be large, it is recognized
that the scale of direct interactions for each user is often
small, so filtering can be done at the server to deliver only
messages of interest to a user. For example, if a user is only
interested to see or interact with other users within a 50
meter radius, such area of interest (AOI) can provide the
server a filtering criteria, to decide which state updates are
relevant and should be sent to the user.

While users may avoid data overload in this manner, the
filtering tasks itself demand computation and constitute a
potential overload for the server. Najaran and Krasic thus
have suggested that by separating out the filtering (i.e.,
interest management) from the processing of game logic
(or state management) [12], larger interaction group can be
achieved. Lake et al. [13] also suggest that by separating
the server component handling client connections from the
main server functions (i.e., state and interest management),
scalability of the system can further be improved.

D. Publish / Subscribe

One common way to realize interest management is
via the publish / subscribe (pub/sub) paradigm [14]. The
simplest form is channel-based (or topic-based) pub/sub. A
subscriber would specify that she is interested in the mes-
sages of a particular channel by expressing a subscription
interest. Then whenever new messages are delivered (i.e.,
published) to that channel, all the subscribers of the channel
would receive the message.

In the case of IM, each interaction group can be seen
as a message channel, where all participants can subscribe
and publish messages to. For MMOGs, a common technique
is to assign each partitioned region its own channel, and
have the server listen to all event messages delivered to
that channel. User clients can also subscribe to channels
that constitute its AOI, to receive relevant update messages.
However, in such case, the basic problem is how to find
the right partitioning, so that overload or underload of the
server (i.e., the region’s channel) will not occur. Spatial
publish / subscribe (SPS) [15] is another form of pub/sub
where the filtering is not based on specific channels, but
on spatial areas. Whenever a publication area overlaps with
a subscription area, the published message is delivered to
the subscriber. A user can perform an area subscription to
indicate an interest in all update messages within a certain
area, while publish his actions as event messages as point
publications. While the server can perform area subscription
for event messages generated by users, and publish state
updates as point publications, to be received by user clients.
Viewed in this way, the scalability of a given interaction
group thus depends on how scalable the pub/sub service can
be.

655655

III. IDN BASICS

We define an IDN as a system that supports real-time
interactions between human participants on a large-scale [6].
The scale here refers to both the total number of system
participants (i.e., system scalability), and the number of par-
ticipants within an interaction group (i.e., group scalability).
For example, a good IDN should be able to serve, both
thousands of participants in a live concert, and millions of
concurrent users across the entire system.

By interaction, we mean small data packets that represent
human behaviors (e.g., text and voice speech, gesture data, or
more sematic data such as trading and attacking in games).
Often the interaction is bi-directional and within a certain
interaction group. We observe that most interactions can be
described by an event → processing → update data path.
For example, in a MMOG, when user A trades a sword
with user B for money, a trade event is first sent from the
user to the server, where the event is checked for correctness
(e.g., whether both users have the items, and whether a trade
is allowed given the game logic). If the event is accepted
and properly processed, some game states will be changed,
and updates are sent to the affected users (e.g., user A is
notified of some money increase in her pocket, while user
B receives a sword). For simpler interactions, such as a chat
on IM networks, the processing stage may be absent and a
chat message (i.e., sending of an event) can go directly to
the affected user (i.e., receiving of an update). In its most
general form, the event → processing → update data path
may be observed for all interactions. IDNs thus should be
designed to support this data path, while meeting its basic
requirements.

A. Requirements

Interactivity As interactions are exchanges between hu-
man users, it is important that they perceive the process
as happening in real-time. Interactions thus are latency-
sensitive and should complete within some well-specified
time limits. However, the exact latency tolerable depends
on the interaction or even application type. For example,
voice packets should arrive within 100ms, while a latency
up to a couple of seconds may be acceptable for text chat.

Scalability The scalability requirement for IDNs dictate
that both system scalability and group scalability should
be achieved. This requirement means that an interaction
data path should still be completed within a given latency
limit, even when the number of users increases within the
group, or within the system. In terms of system design,
this means that when the number of user scales, the system
resources devoted to support these users should also increase
accordingly. Ideally, resource requirement and provisioning
should match with each other (e.g., both can scale linearly,
as opposed to a quadratic increase in consumption is met
with only a linear increase in provisioning).

Generality Although existing IM and MMOG systems
do fulfill some interactivity and scalability requirements
as mentioned above, often they are specialized systems
designed for a particular purpose. We do not yet see in-
teractions that are supported in a generic manner, much like
how CDNs have helped the Web to distribute content. A
system that can serve different applications on the same
infrastructure thus would be hallmark for an IDN.

B. IDN Components

To realize an IDN, we may generalize its components and
potential design from existing systems. The key to interactiv-
ity is to ensure that both data delivery and processing can be
completed within bounded amount of time, which requires
that these tasks be distributed to different nodes, when the
number of user scales. As long as the number of users within
an interaction group is small, system scalability can be
achieved by simply providing more server machines for each
interaction group. However, the assignment of workload to
servers should be dynamic and flexible, so that we do not
face server overload or underload. Group scalability on the
other hand is more tricky, and some kind of forwarding
mechanism may be needed (e.g., [16]), so that users may
still receive relevant messages within the same group, at the
expense of slightly increased latencies.

The central design idea for an IDN is that the process-
ing of states (e.g., state management) is separated from
the expression of interests (e.g., interest management), so
that overall scalability may increase, without hindering or
overloading any particular system component. We identify
three main components that an IDN can include and describe
them as follows.

Proxies Proxies are servers where the user clients connect
to directly, in order to join the IDN. Users should connect
to the closest proxies (latency-wise) in order to minimize
overall latency. IDN proxies however differ from CDN
proxies in that instead of serving content, they perform
publish / subscribe requests on behalf of the users, to other
parts of the IDN networks (namely the matchers).

Matchers Matchers are server that support the publish
/ subscribe functions, so proxies (on behalf of the users)
may specify interest expression in the form of subscription
requests to the matchers. User events are also sent (i.e.,
publish) to these matchers via the respective proxies, so that
the event messages can be re-directed to appropriate handlers
(i.e., subscribers) for processing.

Managers Managers basically serve the function of object
state maintenance (e.g., MMOG game objects), and the
processing of events to modify the object states. Once states
are modified, update messages may then be published by
managers to the matchers, so that interested users can receive
the updates via their proxies’ subscriptions.

656656

C. Design Considerations

To ensure that interactivity is achieved, the time taken for
an event → processing → update cycle should be bounded
within some limit, this implies that the time spent for
interest management and state management, should both be
within certain limits. The processing time taken by state
management is a function of the number of data objects
accessed and updated, and will depend on the nature of the
interaction and processing logic (i.e., event handling rules).
Assuming that only a limited number of objects are accessed
for any given event, the time for state management may be
relatively constant. On the other hand, the time taken for
interest management (done at the matchers) is a function of
the interaction group size, so the larger the group, the longer
the delivery time.

One way to manage delivery delay, as group size grows,
is to make matchers deliver messages not directly to sub-
scribers, but some helpers first, which then help to forward
the message (e.g., a forwarding pool formed by machines
with good upload capacities [17]). The amount of message
deliveries thus may be reduced, at the expense of increased
latencies. The additional latencies tolerable and the number
of helpers that can be found, will determine the limit of the
interaction group supportable.

IV. SURVIVABILITY REQUIREMENTS

We define survivability as the ability of the system to
sustain a certain amount of component failures, yet still be
functional. For a well-designed system, it is only possible
to break it if a large ratio of its components (nodes) have
failed. The design of the Internet may be the best example of
a survivable network, and the key feature is the avoidance
of any centralized component throughout the system. The
Internet is composed of routers which all speak and share the
Internet Protocol, and its main function (i.e., data delivery)
can be performed without any central resource. So single or
even regional failures of routers do not hamper the system,
as data delivery can be supported by still-functional routers.
Extending from this concept of single point avoidance, we
consider that there are three important design considerations
for the survivability of an IDN: functional redundancy, attack
tolerance, and inter-operability.

A. Functional Redundancy

Existing systems that support interactions often have a
single point of entrance, for example, a game lobby server in
the case of MMOG, or an initial contact server in case for IM
services. Such an entry point thus constitutes as a potential
bottleneck for the system. When faced with a large number
of concurrent join or denial of service attack, the system
may temporarily cease to accept new join requests and can
be considered non-functional by its users. One solution is
to make bootstrapping (i.e., joining the system) done via
multiple, equally valid entry points. Having a list of available

proxies in this case would help. However, other issues such
as unique ID assignment and entry point discovery, should
also be distributed and do not rely on centralized resources.

Once users have login into the system, the event →
processing → update data path of an IDN is executed
over three components: proxies, matchers, and managers.
An IDN thus can be most fault-tolerant, when each of these
components is replaceable by other nodes of the same type.
To do so, redundant functional components that can replace
one another’s function should be built into the system.

Ideally, each execution of an event → processing → up-
date cycle should be capable of going through a different set
of system components (e.g., proxy, matcher, and manager).
This is also the rationale behind new MMOG architectures
such as Sun Microsystem’s Project DarkStar [18]. However,
as there are costs in discovering and selecting the nodes
to use, normally the system operates most efficiently if
the same set of nodes can be repetitively used, avoiding
discovery and selection costs. Replacement should only
occur when the data path is blocked and a failing component
needs substitution by a functioning alternative.

Failure recovery deals with two main issues: whether the
states at the component is recoverable, and whether other
interacting nodes may detect the failure and contact the
replacement. The less stateful a component, the easier its
recovery or substitution when failure occurs. We discuss the
possible failure scenarios and recovery mechanisms for each:

Proxy Proxies are stateful of the subscription records of
the user clients they serve. However, as such records are also
available at the users, if a proxy fails, the connected user
client should simply find another proxy and perform a re-
subscription. This in practice can be considered as a system
re-join by the clients. While some costs exist, no extra
functions are needed for proxy recovery. When a substitute
proxy is up, the new proxy can perform re-subscription
on behalf of its user clients to the matchers, so that the
subscription records at the matchers are also updated.

Matcher If a matcher fails, the data lost is mainly the
pub/sub information stored at the failed node. Specifically,
subscription records are more important than publication
records, as publications are designed to be short-lived and
non-stateful. If a given publication is lost, the effect can be
duplicated with a simple message re-publication. In theory,
if the subscribers or publishers can detect the failure of
the matchers, then they can perform re-subscription or re-
publication of the messages. So even though the matchers
are stateful (by having subscription records), such records
can be re-constructed as duplicated information exists at
the original subscribers or publishers (i.e., other proxies or
managers). The key issue then is that proxies and managers
need to detect the failures of the matcher(s) in contact, and
re-perform publications or subscriptions in a timely manner.

Manager Managers are the most stateful among the three
main IDN components, as they need to maintain object

657657

states meaningful to the sematics of interactions. There
is thus no straightforward recovery for their failures and
certain fault-tolerant mechanisms need to be designed in
place. The most basic measure is to duplicate the states
stored at each manager at their neighbors. The neighbor here
can simply be another well-defined manager. For example,
for channel-based pub/sub records, the neighbor can be the
successor node on a DHT ring [8]; for spatial pub/sub, the
neighbors can simply be the managers responsible for the
enclosing areas. When a given manager fails, its neighbors
thus can detect and takeover its original tasks, and also
perform re-subscription of its interests to the matchers. How
fast or thorough the recovery can be, will depend on how
complicated the object states are being stored. The simpler
and less stateful the objects, the easier the recovery (e.g., in
an MMOG, objects that store only user positions are easier
to recover than objects that store the status, inventory, equip-
ments of users). As a secondary measure, the objects at the
managers can be backup to persistent databases periodically,
so that in case of disaster or massive failures (e.g., failures
of a manager and its designated backup neighbors at the
same time), the object states are still eventually recoverable
from the database. Reliable and fault tolerant database then
becomes a requirement for system reliability. But here we
assume that such database exists and can be integrated to
the IDN.

B. Attack Tolerance

Large-scale services today face many forms of attacks,
we discuss how IDNs may survive malicious attacks (e.g.,
denial of service, or DoS attacks) launched possibly from
multiple sites. Functional redundancy already provides a
certain protection against attacks. However, if certain proxies
are targeted by a DoS attack, besides having the clients
try to join the system via different proxies, more active
approaches may be needed. A technique used by existing
websites for load balancing and fault tolerance is to provide
multiple service points, and have the DNS to return different
IP addresses for the same hostname, so that user traffics
may be re-directed to different service points (also called
the Round-robin DNS). However, as DNS records can be
cached by clients or within the DNS hierarchy, it is possible
that clients will still attempt to connect to obsolete / failed
service points.

A more active approach is to segment the joining process
into stages, where in the first stage, the client first contacts
one of the known proxies, but only to obtain information
of another live proxy, with which subsequent connections
will occur. This way, only authenticated (legal) clients may
learn of the proxies that perform the actual services, while
publicly known proxies only serve the pointers. This way,
not only the publicly known proxies can have lighter loads,
if they are being targeted for DoS attacks, they can also
shutdown and change IP quickly and easily.

Assuming that there is a large IP pool at the disposal
of the IDN service provider, where at any given time only
a subset of the IPs are alive, and that clients refresh their
known list of public proxies every time they connect to the
system. The system can increase the variety and flexibility
of its service points, and make it harder to have a targeted
attack at the system.

C. Inter-operability

The above two considerations, if fully implemented, al-
ready provides a certain degree of survivability against
failures. However, while these measures deal with the failure
within a single IDN, survivability at a higher level demands
that different IDN systems can share common vocabularies
(i.e., message formats and protocol) such that the entire IDN
services can still be operational even if individual IDNs have
failed (i.e., inter-operability exists among them).

The concept here is very much akin to how the IP-based
Internet itself is resilient against failures of any number of
its components (i.e., routers), and how WWW is resilient
against the failures of any number of websites. While
individual websites are failable, the entire WWW is difficult
to fail as many different websites exist, and broken links do
not affect the main functions or usability of the whole Web
system. This brings us to the interesting issue that whether
IDNs can be constructed similar to WWW in that common
functionality exists between different IDN services and users
can simply migrate from one to another easily. To the users,
this effectively means that there is just one global IM service
and users of different IM systems can all talk to each other;
or in the case of MMOG, users can actually migrate between
different MMOG systems, going from one system to the
next, with ease and possibly using the same virtual avatar.

We leave this as thoughts for the future, as this is not just
a technical issue, but involves non-technical considerations
(e.g., IM operators generally want to segment their users and
have non-interoperable systems, so that they can attain and
keep user records to themselves; similarly, a universal game
client may not be desirable to MMOG operators, if users
who can easily leave are more than users who can easily
enter). However, as we have seen examples of such system
(e.g., WWW and the Internet itself), that by networking all
systems together, the total utility is greater than the sum
of its parts, such prospects are not entirely impossible, if
operators can find out that there is more to gain than lose
by being inter-operable with one another.

To the users, being interoperable at the IDN level means
that he or she can use a service and migrate to the next
seamlessly. Chatting or finding IM friends at another net-
work, or going from one MMOG to another, is as seamless
as going from one website to the next.

658658

V. CONCLUSION

While we do not yet see general Interaction Distribution
Networks (IDNs) today, their emergence may be expected
as demands for real-time Internet interactions increases. In
this paper, we have briefly described the components of an
IDN and how it can provide scalable interactions to both
existing IM and MMOG systems, while enabling larger
group sizes. We also identify that the survivability of an
IDN will mainly rest on three issues: functional redundancy,
attack tolerance, and inter-operability. Among them, the
redundancy of managers may be the most complex, as it
involves how application-specific object states should be
replicated and recovered; realizing inter-operability is also
non-trivial, as it is not just a technical issue, but social and
political as well.

Existing CDNs are operated as commercial services that
facilitate the distribution of web content, the operation of
IDNs may work in a similar fashion. However, for IDNs
to be truly scalable and survivable, inter-operability among
different IDN components may be needed, so that users can
easily migrate and interact with users from different IDNs,
and form interaction groups dynamically. Failures of IDN
components may also be most recoverable, given the large
pool of units with similar functions. In time, the emergence
of IDNs may enable new scalable applications and behaviors
on the Internet that we have yet to experience.

REFERENCES

[1] IM, http://en.wikipedia.org/wiki/Instant messaging, 2008.

[2] T. Alexander, Massively Multiplayer Game Development.
Charles River Media, 2003.

[3] P. Rosedale and C. Ondrejka, “Enabling player-created on-
line worlds with grid computing and streaming,” Gamasutra
Resource Guide, 2003.

[4] http://wow.joystiq.com/2008/04/11/chinese-wow-hits-1-
million-concurrent-players/, 2008.

[5] http://alphavilleherald.com/2009/12/second-life-losing-
traction-concurrent-users-slide.html, 2009.

[6] S.-Y. Hu, “Interaction distribution network,” in Proc. Inter-
national Conference on Digital Information Processing and
Communications (ICDIPC 2011), 2011.

[7] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson, “Reliabil-
ity and security in the codeen content distribution network,”
in Proceedings USENIX Annual Technical Conference (ATEC
’04), 2004.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network,” in
Proc. SIGCOMM, 2001.

[9] http://en.wikipedia.org/wiki/Content delivery network, 2011.

[10] Y.-T. Lee and K.-T. Chen, “Is server consolidation beneficial
to mmorpg?” in Proc. IEEE Cloud, 2010.

[11] K. L. Morse, L. Bic, and M. Dillencourt, “Interest manage-
ment in large-scale virtual environments,” Presence, vol. 9,
no. 1, pp. 52–68, 2000.

[12] M. T. Najaran and C. Krasic, “Scaling online games
with adaptive interest management in the cloud,” in Proc.
NetGames 2010, 2010.

[13] D. Lake, M. Bowman, and H. Liu, “Distributed scene graph
to enable thousands of interacting users in a virtual environ-
ment,” in Proc. NetGames 2010 (MMVE session), 2010.

[14] A. R. Bharambe, S. Rao, and S. Seshan, “Mercury: A scal-
able publish-subscribe system for internet games,” in Proc.
NetGames, 2002, pp. 3–9.

[15] S.-Y. Hu et al., “A spatial publish subscribe overlay for
massively multiuser virtual environments,” in Proc. 2010
International Conference on Electronics and Information En-
gineering (ICEIE 2010), 2010, pp. V2–314 – V2–318.

[16] J.-R. Jiang, Y.-L. Huang, and S.-Y. Hu, “Scalable aoi-cast
for peer-to-peer networked virtual environments,” in Proc.
ICDCS Workshop Cooperative Distributed Systems (CDS),
2008, pp. pp.447–452.

[17] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda,
J. Pang, S. Seshan, and X. Zhuang, “Donnybrook: Enabling
large-scale, high-speed, peer-to-peer games,” in Proc. SIG-
COMM, 2008.

[18] J. Waldo, “Scaling in games & virtual worlds,” ACM Queue,
Nov/Dec 2008.

659659

