
Acceleration of Anomaly Detection in Blockchain Using In-GPU Cache

Shin Morishima and Hiroki Matsutani
Dept. of ICS, Keio University

3-14-1 Hiyoshi, Kohoku, Yokohama, Japan
Email: {morisima,matutani}@arc.ics.keio.ac.jp

Abstract

Blockchain is a distributed ledger system composed of a
P2P network and is used for a wide range of applications,
such as international remittance, inter-individual transac-
tions, and asset conservation. In Blockchain systems, tam-
per resistance is enhanced by the property of transaction
that cannot be changed or deleted by everyone including
the creator of the transaction. However, this property also
becomes a problem that unintended transaction created by
miss operation or secret key theft cannot be corrected later.
Due to this problem, once an illegal transaction such as
theft occurs, the damage will expand. To suppress the dam-
age, we need countermeasures, such as detecting illegal
transaction at high speed and correcting the transaction
before approval. However, abnormality detection in the
Blockchain at high speed is computationally heavy, because
we need to repeat the detection process using various
feature quantities and the feature extractions become over-
head. In this paper, to accelerate abnormality detection,
we propose to cache transaction information necessary for
extracting feature in GPU device memory and perform both
feature extraction and abnormality detection in the GPU.
We employ abnormality detection using K-means algorithm
based on the conditional features. When the number of
users is one million and the number of transactions is
100 millions, our proposed method achieves 37.1 times
faster than CPU processing method and 16.1 times faster
than GPU processing method that does not perform feature
extraction on the GPU.

Keywords

Blockchain, Anomaly detection, and GPU

1. Introduction

Blockchain is a distributed ledger system composed
of P2P network proposed by Bitcoin [1]. In Blockchain,
sender and receiver can trade directly without trusted third
party such as a bank, unlike existing online money transfer
system. The most widely-used applications of Blockchain

are crypto currencies. They are used for international
transactions because of low cost and fast transactions by
the direct transactions. Blockchain has various features,
such as fault tolerance, tamper resistance, and anonymity.
Applications of the the crypto currencies are conservation
of assets utilizing fault tolerance and personal transactions
that can protect personal information by anonymity. In
addition, Blockchain is used for not only crypto currencies
but also asset transactions other than currency [2][3],
distributed application [4][5], document storage system,
and registration of rand.

The data structure of Blockchain is a chain of hash val-
ues of blocks each of which contains a set of transactions.
In this structure, an update of a transaction causes changes
in all the blocks after the block containing the transaction.
With this structure, update or delete of a Blockchain
transaction is extremely difficult by everyone including
the creator of the transaction; thus tamper resistance is
high. However, this feature becomes a problem in which
Blockchain system cannot modify fraudulent transactions
made by miss operations or stolen secret keys. Because
of this problem, once an illegal transaction, such as theft,
occurs, the damage will expand. To suppress the damage,
we need countermeasures, such as detecting illegal trans-
action at high speed and correcting the transaction before
approval.

Pham et al. proposed an abnormality detection method
for Blockchain transactions by using K-means clustering,
Mahalanobis distance, and local outlier factor [6]. Using
this method, actual theft transactions in past transactions of
Bitcoin network were detected. However, abnormal trans-
actions that can be detected by specific feature quantities
and algorithms are limited. In reality, we need to repeat
abnormality detections by changing feature quantities and
algorithms, resulting in heavy computations and long com-
putation time. Figure 1 shows the execution time when
abnormality detection is executed using K-means algorithm
with four feature quantities, which is a similar approach
to [6]. When the number of users is one million, the
execution time is about 25 seconds, which is longer than 15
seconds of the average block creation time of Ethereum [4]
which is one of typical Blockchain systems. The number
of users of one million is almost equal to the number
of holders of one Bitcoin (equivalent to the market price

244

2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big
Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications

978-1-7281-1141-4/18/$31.00 ©2018 IEEE
DOI 10.1109/BDCloud.2018.00047

Figure 1. Execution time when abnormality detection
is executed using K-means method with four feature
quantities (similar approach to [6])

of 6,400 dollars) in the Bitcoin network [7] (in actual
operation, more users may be targeted). This result shows
that the time for a single abnormality detection exceeds the
block creation time, which means that multiple abnormality
detections cannot be executed within the creation time.
In this paper, to accelerate abnormality detections, we
propose to cache transaction information necessary for
extracting features in GPU device memory and perform
both the feature extraction and abnormality detection in the
GPUs. Specifically, we propose to cache a graph structure
representing transaction status of users as an array-based
data structured suitable for GPU processing. By extracting
a feature quantity from a graph as an information source,
both the feature extraction and abnormality detection can
be executed in the GPUs.

The rest of this paper is organized as follows. Section
2 surveys related work. Section 3 illustrates our proposed
In-GPU cache based abnormality detection method for
Blockchain network. Section 4 shows evaluation results and
Section 5 concludes this paper.

2. Related Work

2.1. Data Structure of Blockchain

Figure 2 shows an overview of data structure of
Blockchain. Upper half of the figure shows the overall
Blockchain structure consisting of a chain of blocks. A
block is a set of transactions, and detail of a transaction is
shown in lower half of the figure. A block contains block
ID, ID of previous block, and set of transactions. A block
ID is a hash value of its entire block excluding the block
ID. Because a block contains the previous block ID, the
block is connected to the previous block by the hash value.
The connection continues back to the genesis block, and
the structure looks like a chain; so it is called Blockchain.

Figure 2. Overview of data structure of Blockchain

In other words, each block ID affects all the subsequent
blocks, and an update of a transaction causes changes of
all blocks after the block containing the transaction. This
feature enhances tamper resistance, because if an attacker
tampers a transaction, the attacker must tamper all blocks
after the block containing the transaction. Lower half of the
figure shows data structure of a transaction. The structure
of transaction is similar to the structure of block. That is, it
contains transaction ID and transaction detail. A transaction
ID is a hash value of its entire transaction excluding the
transaction ID.

The write query of Blockchain is always used to gener-
ate a new block appended as the latest block of the chain.
This means that past blocks and transactions in Blockchain
are not updated nor deleted 1. Blockchain system employs
a consensus algorithm, and a block is generated only when
the condition based on the algorithm is satisfied, in order
to exclude malicious network participants that generate
selfish blocks. Regarding the consensus algorithm, several
algorithms are proposed, such as PoW (Proof of Work),
PoS (Proof of Stake), and PBFT (Practical Byzantine Fault
Tolerance) [8].

For approval of a transaction in Blockchain system,
the conditions based on the consensus algorithm must be
satisfied, and once approved, the transaction cannot be
changed even by a creator of the transaction nor system
administrators. In addition, illegal transactions (e.g., those
by theft secret keys) are not matters of the protocol; thus
they cannot be canceled at the time of approval by the con-
sensus algorithm. Please note that there is a time period for

1. Specifically, there is a possibility that a block is disabled due to a
chain split or reconstruction. However, as a block becomes older, prob-
ability of invalidation becomes lower. In Bitcoin system, the probability
that the 6th block before the latest block is invalidated is considered to
be almost zero.

245

Figure 3. Overview of user graph

a transaction to satisfy the consensus condition (approval
of the transaction) after creation of the transaction. Such
illegal transactions can be corrected if they are detected
during this period. The motivation of this paper is, thus,
to detect abnormalities at high speed and high accuracy in
order to suppress damage of the illegal transactions.

2.2. Blockchain Search Using In-GPU Cache

In [9], we proposed an acceleration method of
Blockchain transaction search using in-GPU cache. In
Blockchain systems, most users use Blockchain indirectly
via services provided by full nodes, such as exchanges
and wallet applications. Therefore, most Blockchain search
queries are concentrated to a part of full nodes that
provide the services, and thus the search queries at the
full nodes become a bottleneck of Blockchain system. We
proposed an array-based tree structure taking advantage of
GPU processing and the Blockchain-specific characteristics
where past transactions are not updated nor deleted. The
Blockchain transaction search was accelerated by 3.4 times
faster than existing method, which is a general purpose
GPU search based on key-value store structure [10][11].
By using the Blockchain transaction search [9] in combi-
nation with the Blockchain abnormality detection method
proposed in this paper, an entire Blockchain system can be
accelerated, because abnormality detection is executed at
full nodes that provide the services.

2.3. Abnormality Detection on Blockchain

A method for detecting abnormal transactions in the
Blockchain is proposed in [6]. The method uses the user
graph that represents user-centric transactions flow. Figure
3 shows an overview of the user graph, where a user is
a vertex and a transaction is an edge. As shown in the
figure, when there is a transaction from B to A, an edge
from B to A is created. The graph structure is expanded
by new transactions represented as edges. This user graph
is used to extract feature quantities for each Blockchain
user. For example, the number of edges that enter a

certain vertex is the number of deposit transactions, and
the number of edges that leave represents the number of
withdrawal transactions. They used six feature quantities,
such as the number of deposit transactions, the number
of withdrawal transactions, average deposit amount, and
average withdrawal amount, for the abnormality detection.
Also, they used three anomaly detection algorithms, i.e., K-
means clustering, Mahalanobis distance, and Local Outlier
Factor. By using the user graph based method, two actual
theft cases on June and October in 2011 at Bitcoin network
were detected. Please note that many abnormal transactions
other than these transactions were detected by the method.
However, it is very difficult to judge if they are really stolen
cases, because information about most stolen cases would
not be disclosed.

The detected theft cases are varied depending on the
anomaly detection algorithm used. This means that we
need to repeat abnormality detections by changing the
algorithms. In addition to the six feature quantities used for
the experiment, if we used another feature quantity such
as balance, different abnormalities would be detected. The
number of all the past transactions in Blockchain is huge
and the computation cost for anomaly detection algorithms
increases as the number of input samples increases. Thus,
in reality, feature quantities are extracted from a range
of transactions selected by a given condition for practical
abnormality detection. For example, a range of transactions
which were created within one year or recent transactions
whose cumulated size is less than a certain limit can be
used for the feature quantity extraction. Due to various
choices of the conditions, computation cost for the transac-
tion extraction becomes large. In this paper, both the feature
extraction and abnormality detection are accelerated by
GPUs. As a representative algorithm, K-means clustering
is implemented and evaluated for the abnormality detection
of Blockchain. Please note that our proposal method can
be applied to the above algorithms other than K-means
clustering.

3. Abnormality Detection Using In-GPU
Cache

3.1. Overview of Proposed System

All the transaction information of Blockchain cannot
be stored in the GPU device memory which is much
smaller than host memory. For example, NVIDIA GeForce
GTX 980 Ti has 6GB device memory, while size of
Bitcoin transaction data is about 160GB. There are two
general approaches for the abnormality detection with a
limited GPU device memory. One approach is to repeat the
processes in which a part of transactions are sent to GPU
and abnormality detection on that part is performed using
the GPU. Another approach is that feature quantities are
extracted by CPU and then abnormality detection is done

246

Figure 4. Overview of abnormality detection system
using In-GPU cache

by GPU. For the first approach we need to consider the
overhead for CPU-GPU data transfers, and for the second
approach the issue is high computation cost for feature
extractions by CPU. On the other hand, in this paper, we
propose a method to perform both the feature extraction
and abnormality detection on the GPU. In the proposed
method, to extract feature quantities by GPU, a modified
user graph that has information of transactions necessary
for the extraction is used. The user graph can be cached in
the GPU device memory, because the size of user graph can
be reduced by eliminating some information unnecessary
for feature quantity extraction, such as signature of the
sender. By caching the user graph in the GPU device mem-
ory, both the feature extraction and abnormality detection
can be performed by the GPU.

Figure 4 shows an overview of abnormality detection
system using the In-GPU cache. As shown in the left side
of the figure, all the transaction information is stored in
the host main memory. The user graph is created based on
the information of the sender and receiver, the necessary
information for feature extraction is added to the graph,
and the graph is cached in the GPU device memory. Detail
about the graph creation method is described in Section
3.2. As shown in the right side of the figure, various
feature quantities are extracted from the graph cached in
the GPU device memory, and then abnormality detection
is performed by the GPU. When a different algorithm
for abnormality detection is performed using the same
set of features, the extracted features can be reused to
reduce the overhead of feature extraction. If an abnormality
detection is performed using different features but free
space to extract new features is not available in the GPU
device memory, then old feature quantities are deleted from
the In-GPU cache. Thus, both the feature extraction and
abnormality detection are performed by the same GPU
in the system. The proposed system can accelerate the
abnormality detection of Blockchain compared to naive
approaches that impose CPU-GPU data transfer overhead
or heavy computations for feature extraction by CPU.

Figure 5. Data structure of user graph in In-GPU
cache of proposed system

3.2. Data Structure of User Graph in GPU

Figure 5 shows the data structure of a user graph
cached in the GPU device memory. The upper part of
the figure shows transaction information in the host. At
first, a user graph is created based on the sender and the
receiver information from the original transactions. The
graph created from the information is shown in the left
side of the middle figure. In this graph, a vertex represents
a Blockchain address, and an edge represents a transaction
from the sender to the receiver. If a transaction includes
multiple senders and receivers, edges are created for all
the combinations of sender and receiver pairs.

The data structure for caching the graph in the GPU
is shown in the lower left side of the figure. The graph
is represented using a compressed row storage structure
called CSR (Compressed Sparse Row) to be efficiently
accessed by the GPU. CSR usually consists of two arrays:
an array representing the destinations of edges (DST array)
and that pointing sources of the edges (PTR array). The
destination of an edge represents a receiver of the trans-
action and the source represents a sender. In the proposed

247

system, because a receiver can be found by referring to the
transaction content, the transaction ID is stored in the DST
array instead of the destination of the edge; so we call the
array DSTID in this paper. Using these arrays, a withdrawal
information from a sender can be found by searching from
the PTR array, because transaction information is stored in
these arrays in the sender’s point of view. If the PTR array
points outside of the DSTID array, it means there is no
withdrawal from that vertex. On the other hand, an overall
graph search is needed to obtain a deposit information to
a receiver. In the proposed system, two additional arrays,
where directions of edges in the PTR and DSTID arrays
are reversed, are introduced to search a deposit information
efficiently. Specifically, SRCID array and its PTR array
are added. That is, the SRCID array represents senders
of transactions and its PTR array points receivers of the
transactions. Using these arrays, a deposit information to
a receiver can be found by searching from the PTR array.
In this structure, thus, deposit and withdrawal information
can be searched bidirectionally by using the DSTID array
for the withdrawal and the SRCID array for the deposit
information.

Regarding transaction information, only the items re-
lated to feature extraction are stored in the In-GPU cache.
A cached transaction information is shown in the right side
of the middle figure. In this example, the sender, transaction
amount, and transaction time are cached. Besides this,
we can cache other information, such as block number,
balance, and so on. As the information stored in the In-
GPU cache is increased, although the data size increases,
various features can be extracted. We can decide which
information to be extracted, by considering the capacity
of the GPU device memory. This content is created for
each edge in the user graph, not for each transaction. That
is, when there are multiple senders and receivers in one
transaction, all the combinations of sender and receiver
pairs are created as edges. The structure is represented
as a matrix, where column index is used as transaction
ID. Each column represents transaction contents on an
edge (i.e., a transaction ID) of the user graph, and each
row represents a specific value of the transaction contents
such as transaction amount. Let i be the column index
of an interested transaction ID in the matrix. By using i
as the transaction ID in the DSTID and SRCID arrays,
the transaction contents on each edge can be obtained
from the user graph. The proposed method to extract
feature quantities used for abnormality detection using this
structure will be described in the next subsection.

3.3. Feature Extraction in User Graph

Figure 6 shows a flow chart for extracting feature
quantities from the In-GPU cache with the structure de-
scribed in Section 3.2. First of all, it is judged whether
the feature quantities to be extracted are related to deposit
or withdrawal. The graph structure of the SRCID array is
used in the case of a deposit and that of the DSTID array

Figure 6. Processing flow of extracting feature quanti-
ties from In-GPU cache

is used in the case of a withdrawal. Next, GPU threads
are launched according to the number of vertices (i.e.,
the number of users), and each thread searches a single
element of the PTR array in parallel. Each thread refers to
the SRCID or DSTID array from the corresponding PTR
array and acquires a transaction ID representing a column
of the transaction content matrix. Then, each thread refers
to the row of the transaction content matrix according to
the condition, acquires the element from the row related to
the feature quantity if the condition is met, and aggregates
the feature quantities on the basis of this element. By
repeating these steps (4) and (5) in Figure 6 on all the
edges adjacent to the vertex, the feature quantities based
on all transaction information related to a specific user
can be extracted. These steps represent the processing for
extracting one feature quantity. By repeating these steps
for each feature quantity, multiple features necessary for
abnormality detection can be extracted. When multiple
features are necessary, the conditional judgement is per-
formed only in the extraction steps for the first feature; in
the extraction steps for the other features, the conditional
judgement results for the first feature can be reused.

Figure 7 shows as an example of feature extraction
described in Figure 6. In this example, an average of all
the deposit amounts which are greater than or equal to 15
is extracted. Each number in the figure is corresponding
to each step in the flow chart shown in Figure 6. First,
since the target is payment, the SRCID array is used as
user graph. Next, a thread is launched for each element
of the PTR array, and each element of the DSTID array
is referred to from the PTR array. Since each content
of the DSTID array is the transaction ID that represents
the column number of the transaction content matrix, the
deposit amount can be extracted from the column on the
matrix. If the deposit amount is 15 or more, the total
deposit amount and the number of deposit transactions are
summed up. These steps are repeated until all the edges

248

Figure 7. Example of feature extraction

adjacent to the vertex in charge are completed. Finally,
the average deposit amount is obtained by dividing the
total deposit amount by the deposit number. Although only
one thread is shown in detail in the figure, each thread
executes these steps in parallel at all the vertices. When
the processing of all the threads is completed, an array can
be created that represents an average deposit amount for
each user. The number of elements in the array is equal to
the number of vertices which means the number of users.

3.4. Abnormality Detection Using Extracted Fea-
ture Quantities

By executing various abnormality detection algorithms
for the feature quantities extracted in Section 3.3, anomaly
users in Blockchain can be detected. In this paper, as
an example of the algorithms, an abnormality detection
using K-means clustering is implemented and evaluated.
Originally, K-means is not an algorithm for abnormality
detection, and it is typically used for classifying a large
number of data into clusters. When K-means algorithm is
used as abnormality detection, feature quantity of a user
that is far from the center of gravity of the cluster is
regarded as abnormal after the K-means clustering. The
abnormality detection using K-means clustering when the
number of clusters is k is done by the following steps.

1) An initial cluster is randomly assigned to the
feature quantity vector xi(i = 1, ..., n) of each
vertex.

2) Calculate the cluster center of gravity Vj(j =
1, ..., k).

3) Calculate the distance between each xi and each
Vj . Then xi belongs to the cluster j of the nearest
Vj .

4) Steps 2 and 3 are repeated until the process is
converged. The convergence is detected when the

number of iterations or total amount of changes
exceeds a given threshold. Then the clustering is
completed.

5) Calculate the distance between xi and the center
of gravity Vj of its cluster. xi is detected as ab-
normal if the distance exceeds a given threshold.

When using the feature extraction method described in
Section 3.3, the feature vectors are created as an array
structure, which is suitable for GPU processing. Then GPU
threads are launched according to the number of elements
(i.e., number of vertices) of the array. Since each thread
processes an element in parallel, the procedure can be ac-
celerated by the GPU. Specifically, in the step 2, the center
of gravity is obtained by calculating the average of the
feature quantities of the respective clusters by the reduction
operation. In the distance computations in the steps 3 and 5,
the distance for each vertex is computed by each thread in
parallel. These steps consist of numerical operations using
the array structure. Even if we employ anomaly detection
algorithms other than K-means clustering, a similar parallel
processing can be applied by changing the operations.

4. Evaluations

4.1. Evaluation Environment

All evaluations are conducted with the same ma-
chine. The processor is Intel Xeon E5-2637v3 running at
3.5GHz and memory capacity is 256GB. A single NVIDIA
GeForce GTX 980 Ti GPU is used for the GPU processing.
Table 1 lists the specification of the GPU. We use CUDA
version 7.5. To evaluate the scalability of the proposed
system, we used synthetic transaction data that generated
transactions at random by changing the average number
of transactions per user from 20 to 100. We evaluated the
number of users as 500 thousands and one million. As
an anomaly detection algorithms, anomalies were detected
by K-means clustering. Four feature quantities are exam-
ined: payment number, withdrawal number, average deposit
amount, and average withdrawal amount. The following
three methods are evaluated in terms of the execution time.

• GPU only: The proposed method using In-GPU
cache with feature extraction and abnormality de-
tection by GPU.

• CPU only: A method extracting feature quantities
and detecting abnormalities by CPU.

Table 1. GPU specification used in the experiments

GeForce GTX 980 Ti
Number of cores 2,816
Core clock 1,038MHz
Memory clock 7,010MHz
Memory datapath width 256bit
Memory capacity 6GB

249

Figure 8. Execution time in the case of extracting
feature quantities without condition and performing
abnormality detection for 500 thousands users

Figure 9. Execution time in the case of extracting
feature quantities without condition and performing
abnormality detection for one million users

• CPU + GPU: A method extracting feature quan-
tities by CPU, transferring the feature quantities
to GPU, and performing abnormality detection by
the GPU.

For fairness of evaluation, we also created a user graph
capable of extracting feature quantities on the host memory
to extract feature quantities even when extracting features
using the CPU. In addition, to evaluate the influence of
adding a condition at the time of feature quantity extrac-
tion, we evaluated two cases: cases with and without a
condition on the transaction amount for the extraction.

4.2. Execution Time of Abnormality Detection
Using Feature Quantities without Condition

Figures 8 and 9 show the execution time in the case
of extracting feature quantities without conditions and
performing abnormality detection. The numbers of users
are 500 thousands and one million in Figures 8 and 9,
respectively. Based on [6], the number of clusters in the
K-means method is seven and the number of repetitions
of cluster division is 50 in both the cases. As shown in

Figure 8, both CPU + GPU and GPU only are faster than
CPU only. However, as the average number of transactions
increases, the execution time of CPU + GPU increases,
and the speed-up rate of the proposed method increases.
Since the features extraction process is performed for
each transaction, the time for the feature extractions is
proportional to the average transaction number. On the
other hand, since the number of extracted features do not
change unless the number of users changes, the execution
time of abnormality detection does not change.

Comparing Figure 8 and Figure 9, the number of users
increases and the total transaction volume also increases,
so the execution time increases both in feature extraction
and in abnormality detection. The tendencies, such as the
speed-up rate, are almost the same in Figures 8 and 9.
When the number of users is 500 thousands and the average
number of transactions is 100, the proposed method is 31.5
times faster than the CPU only and 6.3 times faster than
CPU + GPU. When the number of users is one million and
the average number of transactions is 100, the proposed
method is 32.6 times faster than CPU only and 6.6 times
faster than CPU + GPU.

4.3. Execution Time of Abnormality Detection
Using Feature Quantities with Condition

Figures 10 and 11 show the execution time when ab-
normality detection is performed by extracting the features
with the condition that the transaction volume is equal to
or more than the threshold value. The numbers of users
are 500 thousands and one million in Figures 10 and 11,
respectively. As shown in Figure 10, the two GPU based
methods (GPU only and CPU + GPU) are faster than the
CPU only case, as well as the unconditional case (Figure
8). Also, as for the CPU + GPU case, the execution time
increases as the average transaction number increases.

However, by setting conditions, the amount of compu-
tation for feature extraction increases, so the increase in
execution time is larger than the case without condition.
The same tendency can be seen in Figure 11 where the
number of users is one million. As a result, when the
number of users is 500 thousands and the average number
of transactions is 100, the proposed method is 41.6 times
faster than the CPU only and 17.1 times faster than the
CPU + GPU. When the number of users is one million
and the average number of transactions is 100, the proposed
method is 37.1 times faster than CPU only and 16.1 times
faster than CPU + GPU. Compared to the case without
conditions, the speed-up rate is significantly improved,
especially when compared with CPU + GPU.

In this evaluation, we assumed one-to-one transactions
between one sender and one receiver, so the number of
transactions is equal to the degree of the user graph. In
the case of one-to-many or many-to-many transactions,
edges are created for all the combinations of sender and

250

Figure 10. Execution time in the case of extracting
feature quantities with condition and performing abnor-
mality detection for 500 thousands users

Figure 11. Execution time in the case of extracting
feature quantities with condition and performing abnor-
mality detection for one million users

receiver pairs. In this case, the computation cost of the
feature quantity extraction is proportional to the number
of edges of the user graph, not the number of transactions.
The average number of transactions in an actual Bitcoin
network is about 16, which is smaller than this evaluation.
However, the average transaction size is about 500 bytes.
In this size, the minimum number of participants (senders
and receivers) in the average-sized transaction is five (i.e.,
four senders and one receiver 2). Therefore, the average
degree of the user graph is estimated as at least 64 (= 16
× 4).

5. Conclusions

Since Blockchain systems cannot modify approved
transactions, it is necessary to detect abnormal transactions
at high speed and high accuracy in order to suppress the
damage of illegal transactions by countermeasures, such
as correcting transactions before approval. However, to
detect the abnormalities with high accuracy, we need to

2. Information size of a sender is larger than that of a receiver, since
a signature is included in the sender information. If we assume more
receivers, the number of participants will increase.

repeat the detections using various features, so extraction
of the feature quantities becomes a bottleneck for high
speed abnormality detection. Therefore, in this paper, to
accelerate abnormality detection, we propose to cache
transaction information necessary for extracting feature
quantities in GPU device memory and performing both the
feature extraction and abnormality detection by the GPU.
In the experiments, we conducted abnormality detection
using K-means clustering with considering a condition of
transaction amount. When the number of users is one
million and the number of transactions is 100 million,
the proposed method is 37.1 times faster than the CPU
processing and 16.1 times faster than the conventional GPU
method. Even in the case with no condition on the feature
extraction, the proposed method is 31.5 times faster than
CPU processing and 6.3 times faster than the conventional
GPU method.

Acknowledgements This work was supported by
JSPS KAKENHI Grant Number JP16J05641 and JST
CREST Grant Number JPMJCR1785, Japan.

References

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System,” https://www.bitcoin.com/bitcoin.pdf.

[2] “Counterparty,” https://counterparty.io/.

[3] A. Nordrum, “Wall Street Occupies the Blockchain - Finan-
cial Firms Plan to Move Trillions in Assets to Blockchains
in 2018,” IEEE Spectrum, pp. 40–45, Sep. 2017.

[4] “Ethereum Project,” https://www.ethereum.org/.

[5] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making Smart Contracts Smarter,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communica-
tions Security, Oct. 2016, pp. 254–269.

[6] T. Pham and S. Lee, “Anomaly Detection in Bitcoin Net-
work Using Unsupervised Learning Methods,” Compution
Research Repository, vol. abs/1611.03941, pp. 1–5, Nov.
2016.

[7] “Bitcon Rich List,” https://bitinfocharts.com/
top-100-richest-bitcoin-addresses.html.

[8] D. T. T. Anh, W. Ji, C. Gang, L. Rui, O. B. Chin,
and T. Kian-Lee, “BLOCKBENCH: A Framework for
Analyzing Private Blockchains,” in Proceedings of the
International Conference on Management of Data, May
2017, pp. 1085–1100.

[9] S. Morishima and H. Matsutani, “Accelerating Blockchain
Search of Full Nodes Using GPUs,” in Proceedings of the
26th Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing (PDP’18), Mar.
2018.

[10] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor,
and T. M. Aamodt, “Characterizing and Evaluating a Key-
value Store Application on Heterogegenenous CPU-GPU
Systems,” in Proceedings of the International Symposium
on Performance Analysis of System and Software, Apr.
2012, pp. 88–98.

[11] T. H. Hetherington, M. O’Connor, and T. M. Aamodt,
“MemcachedGPU: Scaling-up Scale-out Key-value
Stores,” in Proceedings of the ACM Symposium on Cloud
Computing, Aug. 2015, pp. 43–57.

251

