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Abstract—ARM processors, with their low power consumption
and heat dissipation, have been highly successful in embedded
systems. In the recent past, there have been attempts to adopt
these energy-efficient processors for servers in data centers.
However, a fundamental question remains open with ARM-
based systems on server side is whether they are capable of
handling compute-intensive workloads at scale. This paper gives
our answer to this question with an empirical approach. We
study the performance characteristics of the Amazon Graviton
Processor – an ARM64 processor with the Cortex-A72 micro-
architecture – using the A1 (Graviton) product family on AWS
EC2, with comparisons to the I3 and M5 product families
based on Intel Xeon processors. We use a combination of micro
benchmark and performance counters to identify the lack of L3
cache and the slower memory access speed limit Graviton’s capa-
bility in achieving higher performance. We confirm Graviton’s
capability in handling various large-scale horizontally scalable
compute-intensive workloads, including multi-tier web service,
video transcoding and terabyte scale sorting. In our large-scale
evaluations, the test worker fleet has up to 1600 vCPU cores,
which is by far the largest ARM64 cluster that has been reported.
We observe that the A1 product family achieves the same price-
performance in multi-tier web service, up to 37% cost saving in
video transcoding, and up to 65% cost saving in terabyte scale
sorting, as compared with the I3 and M5 product families.

I. INTRODUCTION

In recent years, there is an increasing attention on energy

consumption in the IT industry, data centers in particular [1]–

[3]. From the processor architectural point of view, there have

been two distinctive approaches to achieve higher level of

energy efficiency in data centers. One approach is using low-

power processors with a complex instruction set computer

(CISC) architecture [4], for example, the Intel Atom product

family. The other approach is using processors with a reduced

instruction set computer (RISC) architecture, for example, the

ARM [5] product family. As compared to processors with a

CISC architecture, processors with a RISC architecture usually

require fewer transistors, leading to lower power consumption

and heat dissipation. Traditionally, ARM processors have

been highly successful in embedded systems including tablet

computers and smart phones. However, the lack of successful

deployments with reasonable scale on the server side hinders

the adoption of ARM systems in data centers, which in turn

makes large-scale studies difficult. To date, a fundamental

question remains open: are ARM systems capable of handling

compute-intensive workloads at scale?

TABLE I: EC2 Instance Types.

Instance

Type2
vCPU
Cores

MEM
(GB)

Price
($/hr)

EBS
Bandwidth

(Mbps)3

Network
Bandwidth

(Mbps)

a1.large 2 4 0.051 3500 10000*
a1.xlarge 4 8 0.102 3500 10000*
a1.2xlarge 8 16 0.204 3500 10000*
a1.4xlarge 16 32 0.408 3500 10000*
i3.large 2 15.25 0.156 425 10000*
i3.xlarge 4 30.5 0.312 850 10000*
i3.2xlarge 8 61 0.624 1700 10000*
i3.4xlarge 16 122 1.248 3500 10000*
i3.8xlarge 32 244 2.496 7000 10000
i3.16xlarge 64 488 4.992 14000 25000
m5.large 2 8 0.096 3500* 10000*
m5.xlarge 4 16 0.192 3500* 10000*
m5.2xlarge 8 32 0.384 3500* 10000*
m5.4xlarge 16 64 0.768 3500 10000*
m5.8xlarge 32 128 2.304 5000 10000
m5.12xlarge 48 96 2.304 7000 10000
m5.16xlarge 96 192 4.608 10000 20000
m5.24xlarge 96 192 4.608 14000 25000

The rise of public clouds has significantly changed the

horizon in the computing resources market [6]. As public

cloud service providers grow bigger, they are also constantly

looking for ways to reduce the energy consumption in their

data centers. In 2018, AWS announced the Amazon Graviton

Processor, a 64-bit ARM processor based on the Cortex-A72

micro-architecture. The Amazon Graviton Processor is made

available on EC2 as the A1 product family 1. This allows the

general public to access ARM64 systems on-demand with the

pay-as-you-go (PAYG) pricing model, and opens the door for

research in ARM64 systems at affordable costs.

In this paper, we evaluate the capacities of the Amazon

Graviton Processor using a combination of micro benchmark

and case studies, with comparisons to Intel Xeon E5 Processor

and Intel Xeon Platium Processor. The micro benchmarks are

performed to understand the performance characteristics of the

1https://aws.amazon.com/ec2/instance-types/a1/
2The A1 product family uses Amazon Graviton Processor @ 2.30 GHz,

with 16 cores on the physical chip. The I3 product family uses Intel Xeon
E5 2686 v4 Processor @ 2.30 GHz, with 18 cores on the physical chip. The
M5 product family uses Intel Xeon Platinum 8175M Processor @ 2.50 GHz,
with 24 cores on the physical chip.

3A star symbol (*) in the value indicates this particular instance type can
support maximum performance for 30 minutes at least once every 24 hours.
The same applies to network bandwidth.
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TABLE II: Individual Tests in UnixBench.

Test Name Test Description

DH Dhrystone 2 using register variables
WH Double-Precision Whetstone
ET Execl Throughput
FC1 File Copy 256 bufsize 500 maxblocks
FC2 File Copy 1024 bufsize 2000 maxblocks
FC3 File Copy 4096 bufsize 8000 maxblocks
PT Pipe Throughput
CS Pipe-based Context Switching
PC Process Creation
SS1 Shell Scripts (1 concurrent)
SS8 Shell Scripts (8 concurrent)
SC System Call Overhead

Amazon Graviton Processor. The case studies are performed

to evaluate the feasibility of using the Amazon Graviton

Processor for various horizontally scalable compute intensive

workloads, including multi-tier web service, video transcoding

and terabyte scale sorting. These experiments are carried out

on AWS EC2 using the A1, I3 and M5 product families, with

their detailed configuration presented in Table I. The specific

contributions of this paper include:

• We use a combination of micro benchmark and Linux

performance counters to analyze the performance of the

target systems. We reveal that although the Amazon

Graviton Processor demonstrates reasonable performance

in various tests, the lack of L3 cache and the slower mem-

ory access speed prevent the A1 instances from achieving

better performance for compute-intensive workload with

intensive demand on memory.

• We verify that the Amazon Graviton Processor is capa-

ble of handling various horizontally scalable compute-

intensive workloads (multi-tier web service, video

transcoding and terabyte scale sorting) at scale in a cost

effective way. The test worker fleet has up to 1600

vCPU cores, which is by far the largest ARM64 clusters

that has been reported. In our evaluations, the Amazon

Graviton Processor achieves the same price-performance

in multi-tier web service, up to 37% cost saving in video

transcoding, and up to 65% cost saving in terabyte scale

sorting. This opens the door for further optimization for

workloads with both cost and deadline constraints.

The rest of this paper is organized as follows. Section II

describes the method and tools used in the micro bench-

mark framework. In Section III, we analyze and discuss

the micro benchmark results of a1 instances in comparison

with those of i3 instances. Section IV presents large-scale

evaluations on Graviton’s capability in handling horizontally

scale compute-intensive workloads, with comparison to Intel

Xeon processors. Section V reviews related work, followed by

our conclusions in Section VI.

II. MICRO BENCHMARK DESIGN

We use UnixBench 5.1.3 4 for the micro benchmark study.

UnixBench includes a number of individual tests, with their

4https://github.com/kdlucas/byte-unixbench

details listed in Table II. Each individual test was designed to

evaluate the performance of certain components on a computer

system. When there are more than one CPU cores on the

system, UnixBench executes the same test twice in sequence,

one with a single thread and the other with multiple threads,

where the number of threads equals to the number of CPU

cores. These tests are executed with a fixed time, and the

test result is reported as index score. The index score reflects

how much work is done during the fixed time, as compared

to the amount of work done during the same fixed time on

a SPARCstation 20-61 5. The benchmark suite produces a

single-thread index score from the single-thread execution, and

a multi-thread index score from the multi-thread execution.

When we need to execute a particular test or a set of tests

with a single thread only, we modify the test script Run and

replace the value of $numCpus with 1.

The benchmark tests are executed in conjunction with perf
- the performance analysis tool for Linux6. We use the “perf

stat” command to collect performance counters, including

context switches, CPU cycles, instructions, cache misses, etc.

These are hardware level performance counters, which can

be enabled via certain instructions. Once enabled, they can

be read by accessing specific processor registers. Due to the

multi-tenant nature in public clouds, on AWS EC2 instances

access to these processor registers is intentionally disabled for

security reasons. It is an undocumented feature that these pro-

cessor registers are made available on very few instance types

running on dedicated hosts 7. Our extensive testing reveals that

this feature is enabled on i3.16xlarge and a1.4xlarge instances

running on dedicated hosts. As such, we choose i3.16xlarge

and a1.4xlarge instances running on dedicated hosts as the test

bed for our benchmark study.

Since a1.4xlarge and i3.16xlarge instances have different

number of vCPU cores and different amount of memory, we

need to find a way to make a fair comparison using the index

scores reported by UnixBench. In UnixBench, each point in

the index score represents a fixed amount of work. Therefore,

we can calculate the cost of doing the same amount of work

in terms of performance counters, as below:

COST =
Performance Counter

Index Score
(1)

Further, we use relative score (RS) to represent how one

system performs as compared to another reference system, as

below:

RS =
Index Score

Index Score on Ref. System
(2)

Memory and cache has a significant impact on the perfor-

mance of software applications. We use lstopo and the proc

filesystem /proc to understand the memory topology on the

target system – including the size of L1, L2, L3 caches and the

5A SPARC workstation manufactured by Sun Microsystems in 1994.
6https://perf.wiki.kernel.org/index.php/Main Page
7http://www.brendangregg.com/blog/2017-05-04/the-pmcs-of-ec2.html
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(a) UnixBench index scores (b) Relative index scores

Fig. 1: Single-thread UnixBench index scores on a1.4xlarge

and i3.16xlarge instances running on dedicated hosts.

TABLE III: Memory topologies on a1.4xlarge and i3.16xlarge

instances running on dedicated hosts.

L1
Data

L1
Instruction

L2
Unified

L3
Unified

a1.4xlarge 32KB 48 KB 2048 KB N/A
i3.16xlarge 32 KB 32 KB 256 KB 2 x 45 MB

amount of DRAM. We use the memory bandwidth benchmark

mbw 8 to evaluate the speed of memory access.

The experiments are performed on AWS EC2 in the us-

east-1 (N. Virginia) region. The operating system used in the

evaluation is Amazon Linux 2. Each test is executed three

times, with each test run being executed on a newly launched

EC2 instance. The data reported in this paper is the average

of the index scores obtained from three independent test runs.

Since the EC2 instances are launched on dedicated hosts, and

only one EC2 instance is being launched and tested at a time,

this can be treated as a single-tenant environment, and is not

exposed to the impact of the noisy-neighbour effect [7], [8]

commonly observed in a multi-tenant environment.

The hosts for the A1 product family has 1 physical CPU

with 16 physical cores, providing 16 vCPU cores for the EC2

instances. The hosts for the I3 product family has 2 physical

CPU’s with a total number of 36 physical cores. With hyper-

threading enabled, a physical host provides 64 vCPU cores

for the EC2 instances. This utilizes 32 physical cores on the

host, leaving 4 physical cores for the underlying virtualization

management software.

III. MICRO BENCHMARK RESULTS

A. Single-Thread Benchmark

Figure 1a presents the single-thread UnixBench test results

on a1.4xlarge and i3.16xlarge instances running on dedicated

hosts. Despite the fact that the CPU cores on both systems have

the same clock rate (2.30 GHz), the index score on a1.4xlarge

is smaller than that on i3.16xlarge in all individual tests. Figure

1b presents the relative scores achieved on a1.4xlarge, with

i3.16xlarge as the reference system. In the best case, a1.4xlarge

achieves a relative score of 86% in system call overhead (SC).

In the worse case, a1.4xlarge achieves a relative score of 13%

in context switch (CS).

8https://github.com/raas/mbw

(a) Instructions per Point (b) CPU Cycles per Point

(c) Instructions per Cycle (d) Cache Misses per Point

Fig. 2: Cost analysis of the single-thread UnixBench test

results on a1.4xlarge and i3.16xlarge instances running on

dedicated hosts.

Figure 2 presents the cost analysis of the single-thread

UnixBench test results on a1.4xlarge and i3.16xlarge instances

running on dedicated hosts. On the instruction level, a1.4xlarge

needs more instructions to achieve a point in all tests except

for Whetstone and Execl Throughput (Figure 2a). On the

one hand, RISC processors have a smaller set of instructions

with few addressing nodes than CISC processors. On the

other hand, in CISC processors, several low-level operations

can be executed with a single complex instruction (for ex-

ample, loading data from memory, performing an arithmetic

operation, then storing the result to memory). As such, it is

reasonable that the same amount of work (a point) requires

more instructions on a1.4xlarge than on i3.16xlarge. Since

the CPU’s on a1.4xlarge and i3.16xlarge have the same clock

rate, one might expect when more instructions are needed to

achieve a point then more CPU cycles are needed to execute

those instructions. Comparing Figure 2b and 2a, this is true

in general, but with the exception of Whetstone and Execl

Throughput. In these two tests, i3.16xlarge executes more

instructions with less CPU cycles. This indicates that for

different tests, on average different number of instructions are

executed in one CPU cycle. Figure 2c presents the number

of instructions per cycle (IPC) observed in the single-thread

UnixBench tests. The i3.16xlarge instance achieves higher

IPC in all tests except for Piped Throughput and system call

overhead (SC).

The biggest influence on IPC comes from memory hierar-

chy. Although memory access is fast, it is still relatively slow

as compared to the processor. This is commonly known as

the memory wall [9]. Most modern computers use a hierarchy

of caches between the processor and the DRAM. The first

level cache (L1) is the fastest and smallest, and is usually

separate for data (L1d) and instructions (L1i). The second level

cache (L2) is slower than L1, but larger, and is usually unified

for data and instructions. Both L1 and L2 are specific to a
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particular processor core, and are not shared among different

processor cores on the same chip. Some processors have a

third level cache (L3), which is slower but larger than L2,

and is usually shared among different processor cores on

the same chip. When the processor requests a particular data

item, it checks the cache (which is faster) before accessing

DRAM (which is slower). If the data is present in the cache,

this is called a cache hit, then computation can be speed

up by not accessing the slower DRAM. If the data is not

present at all levels in the cache hierarchy, this is called a

cache miss, then computation is slowed down because the data

needs to be fetched from the slower DRAM. As shown in

Table III, a1.4xlarge has a larger L1i cache and a larger L2

cache, but i3.16xlarge has an extra L3 cache. For i3.16xlarge,

there are two CPU chips on the physical host, each chip

has a 45 MB L3 cache, which is shared by all CPU cores

on the same chip. Further more, memory benchmark mbw
indicates i3.16xlarge has much higher memory access speed.

In particular, i3.16xlarge achieves 5440 MB/s in memory copy,

a1.4xlarge achieves 3960 MB/s in the same test, which is only

73% as compared to i3.16xlarge. Such difference in memory

access speed correlates well with the 77%, 75%, 75% and 74%

relative scores observed in the Dhrystone, Whetstone, Execl

Throughput, and Pipe Throughput. The impact of memory

hierarchy is reflected in the significant amount of cache misses

observed on a1.4xlarge when the relative index score is below

0.6 (Figures 1b and 2d). This leads to the conclusion that

cache misses due to the lack of L3 cache, as well as the slower

memory access speed, are the primary reasons for the under-

performance observed on a1.4xlarge in these tests.

A good example on the impact from memory hierarchy is

the test on context switch (CS). As shown in Figure 2d, in this

particular test the amount of cache misses on a1.4xlarge is 25

times more than the amount of cache misses on i3.16xlarge.

The frequent need to access the slower DRAM prevents the

instructions from being executed efficiently, which is reflected

in the smaller number of instructions per cycle in Figure 2c.

On a1.4xlarge, the test only requires 25% more instructions

to achieve a point (Figure 2a), but demands more than twice

the amount of CPU cycles (Figure 2b). As a result, the test

achieves the lowest relative score (13%) among all tests. These

observations are in accordance with the observations made by

Li et. al. [10] and their conclusion that the overhead of cache

misses has a substantial impact on the cost of context switch.

B. Mult-Thread Benchmark

Figure 3a presents the multi-thread UnixBench test results

on a1.4xlarge and i3.16xlarge instances running on dedicated

hosts. Figure 3b presents the relative scores achieved on

a1.4xlarge, with i3.16xlarge as the reference system. In most

tests, the index score on a1.4xlarge is significantly lower

than i3.16xlarge. This is reasonable because i3.16xlarge has

64 vCPU cores while a1.4xlarge has only 16 vCPU cores.

However, in all three file copy tests, the index score on

a1.4xlarge is approximately 20% higher than i3.16xlarge. In

our tests a1.4xlarge and i3.16xlarge have EBS volumes of

(a) UnixBench Index scores (b) Relative Index scores

Fig. 3: Multi-thread UnixBench index scores on a1.4xlarge

and i3.16xlarge instances running on dedicated hosts.

(a) Instructions per Point (b) CPU Cycles per Point

(c) Instructions per Cycle (d) Cache Misses per Point

Fig. 4: Cost analysis of the multi-thread UnixBench test results

on a1.4xlarge and i3.16xlarge instances running on dedicated

hosts.

the same type, size, and disk I/O capacity. This suggests

that file copy performance is controlled by disk I/O capacity.

In the single-thread test, the disk I/O capacity is not fully

utilized. In this case, i3.16xlarge achieves better performance

with less cache misses (Figure 2d). In the multi-thread test,

the disk I/O capacity becomes fully utilized by the combined

workload. Since i3.16xlarge has more worker threads, there

exists a higher level of competition for disk I/O among the

worker threads, leading to the increased level of performance

degradation.

Figure 4 presents the cost analysis of the multi-thread

UnixBench test results on a1.4xlarge and i3.16xlarge instances

running on dedicated hosts. Figure 5 presents the ratio between

the costs of achieving a point in the multi-thread UnixBench

test and the single-thread UnixBench test. As shown in Figure

5d, in the file copy tests, significantly more cache misses

are observed on i3.16xlarge. On i3.16xlarge, each CPU core

has its own L1 and L2 caches, but the L3 cache is shared

among all 18 CPU cores on the same chip. In the single-thread

test, the test thread on i3.16xlarge has access to 256 KB L2

cache and 45 MB L3 cache on one physical processor. The

compensation from L3 cache allows i3.16xlarge to achieve

better performance with less cache misses. In the multi-thread

test, the 90 MB L3 cache (45 MB on each physical processor)
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(a) Instructions per Point (b) CPU Cycles per Point

(c) Instructions per Cycle (d) Cache Misses per Point

Fig. 5: The ratio between the cost of achieving a point in

the multi-thread UnixBench test and the cost of achieving a

point in the single-thread UnixBench test on a1.4xlarge and

i3.16xlarge instances running on dedicated hosts.

is saturated by the combined workload from 64 threads,

leading to the significant cache misses on the L3 level shown

in Figure 5d. At the same time, due to the saturation of in

disk I/O, additional idle instructions (iowait) are now needed

to perform the same amount of work in the multi-thread tests.

The competition for disk I/O occurs on both a1.4xlarge and

i3.16xlarge, but the situation is worse on i3.16xlarge because

there are 64 threads instead of 16. As a result, i3.16xlarge

now needs more instructions to achieve a point in these tests

(Figure 5a).

Another notable observation is, in terms of instructions per

cycle (IPC), i3.16xlarge achieves less IPC in all multi-thread

tests than in the single-thread tests (the ratio is smaller than 1

in Figure 5c). This indicates that in the multi-thread tests on

i3.16xlarge each thread achieves less performance than what

is achieved in the single-thread test. Again, this is largely due

to the increased level of cache misses when the 64 threads

compete for the 90 MB L3 cache. For a1.4xlarge, the ratio

for IPC in the multi-thread and single-thread tests is 1 for the

integer processing (DH), floating point processing (WH) and

pipe throughput (PT) tests. Because of the lack of a shared L3

cache, in these multi-thread tests each thread does not have any

impact on other threads running in parallel. When the number

of threads increases, linear performance gain is observed on

the system level. This is reflected in Figure 6 – for a1.4xlarge,

with 16 threads, the multi-thread index score is 16 times as big

as the single-thread index score. Also, for a1.4xlarge, the ratio

for IPC in the multi-thread and single-thread tests is greater

than 1 for the file copy tests. As discussed in the previous

paragraph, the increased instructions are the result of iowait
and do not lead to performance gain in each thread.

Another notable observation in Figure 6 is context switch

(CS) benefits the most from multi-thread processing - perfor-

mance grows faster than the additional of worker threads. On

Fig. 6: The ratio between multi-thread and single-thread index

scores on a1.4xlarge and i3.16xlarge instances running on

dedicated hosts.

(a) Single-Thread Index Scores (b) Multi-Thread Index Scores

Fig. 7: Vertical scaling and UnixBench index scores.

a1.4xlarge, there is approximately 25 million cache misses per

point in the single-thread test, which is reduced to 5 million

in the multi-thread test. Similar level of reduction in cache

misses is also observed on i3.16xlarge. Since cache misses

have a substantial impact on context swith, the reduction in

cache misses results in better performance.

C. Vertical Scaling

Figure 7 presents the system benchmark index scores for all

instance types in the A1 and I3 product families running on

dedicated hosts. In the single-thread tests (Figure 7a), there

exists only some insignificant increase in the index scores

achieved on bigger instance types. This is reasonable because

the test thread only utilizes one of the multiple vCPU cores

on the system. The insignificant increase in index score is

largely due to the fact that system processes are now off loaded

to other vCPU cores, while having an abundance of memory

does not significantly improve the benchmark score. In the

multi-thread tests (Figure 7b), when the number of vCPU

cores doubles, approximately 40% to 60% increase in index

score is observed. The only exception is i3.16xlarge – a slight

performance lost is observed as compared to i3.8xlarge. On

i3.8xlarge there are only 32 threads running on two physical

processors with 36 physical cores and 90 MB L3 cache. The

CPU and the L3 cache experiences less pressure, as compared

to the tests on i3.16xlarge where 64 threads are competing for

the same amount of computing resources. As such, i3.8xlarge

achieves slightly better benchmark score than i3.16xlarge.

However, the hardware performance counters are disabled on

i3.8xlarge and we are unable to verify this hypothesis.

Figure 8 presents the relative multi-thread index scores for

the individual tests, with the reference system being a1.large
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(a) A1 Product Family

(b) I3 Product Family

Fig. 8: Relative multi-thread index scores on A1 and I3 product

families.

and i3.large respectively. In the A1 product family (Figure

8a), in general the index score grows linearly with the growth

in the number of vCPU cores. However, in the file copy

tests, a1.xlarge achieves only very slight performance gain as

compared to a1.large, while both a1.2xlarge and a1.4xlarge

exhibit some slight performance lost. In the I3 product family

(Figure 8b), linear performance are observed in Dhrystone,

Whetstone, and pipe throughput. For the file copy tests,

i3.xlarge instance achieves only very slight performance gain

as compared to i3.large, while performance lost occurs on

i3.2xlarge and bigger instances. On i3.16xlarge, performance

lost is also observed in execl throughput, context switch,

process creation, and system call overhead.

IV. CASE STUDIES

In this section, we use multi-tier web service, video

transcoding, and tera-byte scale sorting as cases studies to

evaluate the potential of using the A1 product family to

handle horizontally scalable compute-intensive workloads at

scale, with comparison to the I3 and M5 product families.

According to AWS, both A1 and M5 are “general-purpose”

product families, providing a balance of compute, memory

and networking resources, and can be used for a variety of

diverse workloads. I3 is a “storage optimized” product family,

which is designed for workloads that require high sequential

read and write access to very large data sets on local storage.

However, the local storage is not being utilized in our case

studies.

In the case studies, we only evaluate the large, xlarge,

2xlarge and 4xlarge instance sizes, because other instance sizes

are not commonly available for the A1, I3 and M5 product

families. All of the EC2 instances are launched with shared

tenancy – i.e, not on dedicated hosts. As such, the observations

are exposed to the impact of the noisy-neighbor effect in a

multi-tenant environment.

Application performance depends on many factors including

the operating system itself, different configurations on the

operating system level, as well as different configurations for

the application being tested. In the case studies, we simulate

the behavior of the ordinary public cloud users in that we use

the operating system and application as they are, with only

a minimum amount of custom configurations. Performance

gain might be achieved by applying “beter” runtime con-

figurations, while performance lost might be observed when

“improper” runtime configurations are used. In a public cloud

environment, application performance is also subjected to the

performance variation commonly observed in a multi-tenant

environment.

A. Multi-Tier Web Service

Multi-tier web service is a typical use case in public clouds.

A multi-tier web service usually includes the following com-

ponents: (a) a web server as the front end, (b) a database server

to persist user data, and (c) a cache layer for session sharing

and caching database query results. In this case study, we

first evaluate the performance of these individual components,

then evaluate the performance of a sample dynamic web page

that integrates these components. More specifically, our tests

include the following:

• Static web page - Fetch a static web page 6,400,000

times from the web server using 128 threads and report

the number of requests per second. The static web page

being tested is the default index.html that comes with the

Apache2 web server.

• Dynamic web page - Fetch a dynamic web page

6,400,000 times from the web server using 128 threads

and report the number of requests per second. The

dynamic web page is in PHP, which calls the phpinfo()

function to display the configurations in the PHP run-time

environment.

• In-memory caching - Perform 6,400,000 transactions

against the Memcached server using 128 threads and

report the number of transactions per second. Each

transaction is a combination of one SET and one GET

operation. The SET command writes to the cache with

a 10-byte key and a 256-byte value, while the GET

command reads the value back from the cache using the

same key.

• Relational database - Perform 6,400,000 transactions

against the PostgreSQL server using 128 threads and

report the number of transactions per second. Each trans-

action includes three SELECT commands, one INSERT

command and one UPDATE command. The test table has

10,000,000 records, with the average record size being

16 KB. In this particular test, we use 6 x 5000 GB

EBS volumes to form a RAID0 disk array to provide

the maximum level of disk I/O capacity (80,000 IOPS

on each EC2 instance).

• Integration test - Fetch a dynamic web page 6,400,000

times from the web server using 128 threads and report

the number of requests per second. The dynamic web

page creates a new session and writes the session infor-

mation into Memcached running on localhost, reads the
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(a) Static Web Page (b) Dynamic Web Page

(c) Memcached (d) PostgreSQL

Fig. 9: The performance of individual components in a multi-

tier web application.

latest 10 records from PostgreSQL running on localhost,

then generates the HTML response based on the result

set.

In this test, we use Ubuntu 18.04.3 LTS as the operat-

ing system, with Apache2 version 2.4.29, PHP version 7.3,

Memcached version 1.5.6, and PostgreSQL version 10.10. The

client machine is m5.24xlarge with 6000 GB EBS volume,

which provides up to 16,000 IPOS disk I/O capacity. The

test client uses persistent connections to interact with the

servers, otherwise the client machine will gradually run out

of ephemeral ports and fail to establish new connections.

Figure 9 presents the performance of individual components

in a multi-tier web application. In terms of serving static web

pages (Figure 9a), M5 performs best, achieving 30% to 50%

more requests per second than A1 and I3. I3 performs slightly

better than A1, except for the 4xlarge instance type. In terms of

serving dynamic web pages in PHP (Figure 9b), M5 performs

best, achieving 15% to 25% more requests per second than A1

and I3. I3 performs slightly better than A1, but the advantage is

insignificant. In terms of in-memory caching with Memcached

(Figure 9c), M5 performs best, achieving 15% to 40% more

transactions per second than A1 and I3. I3 performs better than

A1 on large and 4xlarge instance types, while A1 performs

better than I3 on xlarge and 2xlarge instance types. In terms of

relational database with PostgreSQL (Figure 9d), M5 performs

best on large and xlarge instance types, while I3 performs best

on 2xlarge and 4xlarge instance types.

Since M5 uses a CPU with higher CPU clock rate, it is not

surprising that M5 performs best in almost all component-

level tests. The only exception being the relational database

evaluation, which is at the same time CPU-intensive, memory-

intensive and disk I/O intensive. On large and xlarge instance

types, M5 achieves better performance because CPU is the

bottleneck. On 2xlarge and 4xlarge instance types where CPU

is no longer the bottleneck, I3 achieves better performance

because it has more memory and disk I/O bandwidth.

(a) Requests per Second (b) Requests per Cent

Fig. 10: The performance of the demo multi-tier web applica-

tion.

I3 and A3 have the same CPU clock rate, but I3 has more

memory with faster memory access speed. Therefore, it is not

surprising that I3 performs slights better than A3 in almost all

component-level tests, except for (a) the static web page test

for the 4xlarge instance type, and (b) the in-memory caching

test for the xlarge and 2xlarge instance type.

Figure 10a presents the performance of the demo multi-

tier web application. M5 achieves the best performance in the

integration test, which is expected considering its outstanding

performance in all component-level tests. This is followed by

I3, while A1 achieves the worse performance.

In a real-life use case one needs to consider both the

performance and the cost to achieve the desired performance.

Figure 10b presents the number of requests that can be

achieve with 1 US cent in the integration test. Surprisingly,

A1 achieves higher requests per US cent than M5 on the large

instance type (by 7%) , the same level of requests per US cent

as M5 on xlarge and 2xlarge instance types, and slightly less

requests per US cent than M5 on the 4xlarge instance type (by

15%). I3 achieves much smaller requests per US cent than A1

and M5 on all instance types (approximately 60% less). This is

because I3 is a storage-optimized product family. The pricing

of I3 includes the instance-store volumes that is attached to

the underlying physical host, but the instance-store volumes

are not being utilized in this particular test.

Most modern web services running in public clouds are

designed to be horizontally scalable. With techniques such as

auto scaling, public cloud users can build horizontally scalable

websites using the A1 product family, which can achieve the

same price-performance as compared to using the M5 product

family.

B. Video Transcoding

Video transcoding is a common use case for websites and

mobile applications providing video sharing service. Figure 11

presents a typical use case of video transcoding for a video

sharing website. When the end user uploads a video to the

video sharing service, the video is stored in a bucket on AWS

S3, a record is written to the database, and a transcoding job is

published into a message queue. The uploaded videos are then

transcoded in the background with a batch processing system.

In this case study, we use the large-scale video transcoding

system described in [11] for benchmarking. With a produc-

er/consumer design, the transcoder nodes are stateless in that
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Fig. 11: Architecture of the video transcoding application.

(a) Vertical Scaling (b) Horizontal Scaling

Fig. 12: Scalability of the video transcoding application.

they (a) do not persist any job state on themselves, and (b) do

not communicate with each other. On each transcoder node,

multiple threads are launched to do the actual work, where

the number of threads equals to the number of vCPU cores

available on the node. Each thread performs the following

tasks in sequence: (a) obtains one job from the message

queue, (b) downloads the video clip from S3 to local disk,

(c) uses FFmpeg 9 to convert the video clip from MP4 format

to WMV format, (e) uploads the output file from local disk

back to S3, (f) deletes both the MP4 and WMV files from

local disk, and (g) acknowledge to the message queue that the

job is completed. The performance of the video transcoding

application is measured by transcoding speed, i.e., the number

of video clips processed in a minute.

We use 1,000,000 video clips as the test input. The lengths

of the video clips vary from 6 to 117 seconds. The video

clips are pre-staged to S3 and are evenly distributed in the

message queue. A UUID is used as the object key for each

video clip, which “hints” S3 to distribute the video clips in

multiple partitions for improved performance.

Figure 12 presents the video transcoding test results on

the A1, I3 and M5 product families. As shown in Figure

12a, the transcoding speed increases when the EC2 instance

becomes bigger. There is roughly a linear relationship between

transcoding speed and the number of vCPU cores. For the

same instance size, the A1 product family has the slowest

transcoding speed, while the I3 product family has the fastest

transcoding speed. This suggests that video transcoding is

more memory-intensive than CPU-intensive, because I3 has

slower CPU clock rate but more memory than M5. M5 has

a faster CPU clock rate than A1, therefore achieves better

transcoding performance than A1.

9https://www.ffmpeg.org

Fig. 13: The cost of transcoding 1000 video clips.

We use the 4xlarge instance types in the horizontal scaling

evaluation. For each instance type, we gradually increase the

number of nodes from 5 to 100, with up to 1600 vCPU cores in

the worker fleet. As shown in Figure 12b, for all three instance

types, transcoding speed increases linearly with the addition of

worker nodes. Although a1.4xlarge has the slowest transcoding

speed per node, such linear scaling behavior allows it to

achieve the desired level of performance by adding more nodes

into the worker fleet.

Figure 13 presents the cost of transcoding 1000 video clips

on different instance types among the A1, I3 and M5 product

family. The I3 product family has the highest transcoding cost.

The A1 product family exhibits some modest cost saving as

compared to the M5 product family. In large-scale deploy-

ments with horizontal scaling, achieving the same transcoding

speed with a1.4xlarge can lead to 15% cost saving as compared

to m5.4xlarge, and 37% cost saving as compared to i3.4xlarge.

C. Terabyte Scale Sorting

In recent years, big data analysis is steadily gaining attention

in the information technology industry, with Hadoop MapRe-

duce being one of the most popular tool for such analysis.

Although there isnt an exact size that qualifies a dataset as

big data label, many big data repositories are measured in

terabytes or petabytes. One of the many problems in big data

analysis is the sorting of a very large data set, for example,

finding out a few IP addresses that produce the most number

of 404 errors from a large amount of web server access logs

in a near real-time fashion.

We use the TeraSort application in the Hadoop examples

to performing sorting on a 1 TB dataset on Hadoop clusters

with a1.4xlarge, i3.4xlarge, and m5.4xlarge instance types.

The Hadoop clusters includes one master node and a certain

number of worker nodes. Both the master node and the worker

nodes have a 500 GB EBS volume, offering up to 1500 IOPS

and up to 250 MB/s throughput. The master node runs the

YARN resource manager and the HDFS namenode, while the

worker nodes run the YARN node manager and the HDFS

datanode. We intentionally configure the HDFS replication

factor to be 1. The sorting process produces 2 TB disk reads,

2 TB disk writes, with 1 TB data transfer between different

data nodes across the network. The data to be sorted is divided

into 1024 splits, with 1 GB data in each split.

Figure 14a presents the execution time for sorting 1 TB data

with Hadoop Terasort. For all instance types, the execution

time decreases when the number of nodes increases. The
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(a) Terasort Execution Time (b) Terasort Execution Cost

Fig. 14: Sorting 1 TB data with Hadoop Terasort.

execution time on I3 and M5 are on approximately the same

level. This indicates that (a) the sorting algorithm does not

fully consume the memory available on the worker nodes,

therefore more memory on I3 does not lead to increased

performance, and (b) the sorting algorithm is less CPU-

intensive, because higher CPU clock rate on M5 does not

lead to increased performance. On I3 and M5, the progress

of the sorting process is controlled by disk I/O performance.

However, the execution time on A1 is significantly greater than

the execution time on I3 and M5, which can be attributed to

the slower memory access rate and the lack of L3 cache, as

described in Section III-A.

Figure 14b presents the execution cost for sorting 1 TB

data with Hadoop Terasort. I3 has the highest execution cost,

followed by M5, while A1 has the lowest execution cost. As

compared to I3, A1 achieves 54% to 65% cost reduction. As

compared to M5, A1 achieves 20% to 41% cost reduction.

Since I3 and M5 have shorter execution time, this opens the

door for further optimization for workloads with both both cost

and deadline constraints. That is, one can choose to execute a

certain workload on A1 with longer execution time but smaller

execution cost, or to execute the same workload on I3 and M5

with shorter execution time but greater execution cost.

V. RELATED WORK

The energy consumption of data centers has become a key

sustainability issue [1]–[3]. From the processor architectural

point of view, there have been two distinctive approaches. One

approach is using lower-power CISC processors such as the

Intel Atom product family, which is commonly referred to as

“wimpy nodes”, e.g., [4], [12]. This is effective in handling

I/O-heavy but computationally-lightweight applications such

as key-value stores, but encounters performance issues when

the applications are compute-intensive [4], [12]–[17].

The other approach is using RISC processors such as

the ARM product family. Most of these attempts used 32-

bit Cortex-A7/A8/A9 processors, and the evaluations were

performed on a single-node [18]–[24]. The above-mentioned

research attempts focused primarily on a single-node. Rajovic

et. al. [25] introduced Tibidabo – the first experimental HPC

cluster with 128 Cortex-A9 nodes. With a total number of 256

CPU cores, the experimental cluster achieved 120 MFLOPS/W

on HPL. The authors considered Tibidabo to be “competitive”

as compared to AMD Operton 6128 and Intel Xeon X5660-

based systems. Aakash et. al. [26] present a video analysis

application running on an ARM64 server, which is designed

for automatic license plate recognition and urban scene clas-

sification. Jayanth et. al. [27] compares the performance of

an ARM64 server (AMD Opteron A1100 SoC) with an x64

server (AMD Opteron 3380) for big data workloads. Adrian

et. al. [28] adopted a benchmarking approach to evaluate the

potential of using ARM processors for HPC applications. The

system being evaluated was HPE Apollo 70, an ARMv8 based

cluster with up to 1024 CPU cores and 4096 GB memory.

The authors concluded that the performance of HPE Apollo

70 was as good as, or better, than that of well-established

platforms with Intel Xeon processors. This is by far the largest

ARM cluster that has been reported in literature. Daniel et. al.

[29] performed a comprehensive literature review on previous

attempts in using ARM processors in HPC.

There exists a large collection of literature on evaluating the

performance of computer systems in general [9], [10], [30]–

[33]. The works done with ARM processors usually focus

on comparing the performance and power consumption of

ARM32 devices and x64 devices. The ARM devices being

used are usually Cortex-A8 and Cortex-A9. The x64 devices

used include AMD Operton, Intel Atom, Intel Core2, and

Intel Xeon. Aroca et. al. [18] studied web server and database

server workloads. They reported that the ARM devices were

3 to 4 time more power efficient than x64 systems under

different load situations. Tudor et. al. [19] studied HPC,

web server, and financial analytic workloads. They observed

that low-power CPU cores did not promise energy-efficient

executions for server workloads. On the contrary, significantly

longer execution time and higher energy cost were observed

in HPC due to resource imbalances. Blem [20] studied mobile

client, desktop application, web server and database server

workloads. They concluded that micro-architecture – large

cache, accurate branch prediction and bigger issue in particular

– had the most impact on performance. Ou et. al [21] stud-

ied in-memory database, web server, and video transcoding

workloads. They observed that the energy-efficiency ratio of

the ARM cluster against the Intel workstation varies from 9.5

to 1.2, depending on the type of workload. They concluded

that ARM clusters were only feasible for computationally

lightweight applications. For compute-intensive workloads, the

benefit of using ARM cluster diminished progressively.

Our paper differs from existing literature in that (a) multiple

compute-intensive workload are used in the empirical study,

(b) the scale of the worker fleet is large enough to handle

real-life workloads at scale, and (c) using ARM64 processor

on public cloud is an emerging trend, which has not been

studied before.

It should be noted that in December 2019 AWS addressed

the L3 cache issue in the Amazon Graviton2 Processor 10,

which includes a 32 MB L3 cache. At the time of submitting

this paper, the authors were not aware of the work done in

AWS, nor was AWS aware of the work presented in this paper.

10https://aws.amazon.com/about-aws/whats-new/2019/12/announcing-
new-amazon-ec2-m6g-c6g-and-r6g-instances-powered-by-next-generation-
arm-based-aws-graviton2-processors/
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VI. CONCLUSION

In this paper, we study the performance characteristics of the

Amazon Graviton Processor, with comparison to Intel Xeon

Processors. Using a combination of micro benchmark and

Linux performance counters, we demonstrate that the lack

of its L3 cache and the slower memory access speed can

prevent the Amazon Graviton Processor from achieving better

performance for compute-intensive workload with intensive

demand on memory.

We use multi-tier web service, video transcoding, and

terabyte scale sorting as cases studies to evaluate the potential

of using the A1 product family on AWS EC2 for large-scale

workloads, with comparison to the I3 and M5 product families.

In our large-scale evaluations, the largest cluster includes 1600

vCPU cores, which is by far the lartest ARM64 cluster that has

been reported. The single-node performance of the A1 product

family is not as good as the single-node performance of the

I3 and M5 product families. However, satisfactory processing

capacity can be achieved by practicing horizontal scaling. We

demonstrat that the A1 product family achieves the same price-

performance in multi-tier web service, up to 37% cost saving

in video transcoding, and up to 65% cost saving in terabyte

scale sorting. This opens the door for further optimization for

workloads with both both cost and deadline constraints.
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