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ABSTRACT Clipping is one of the simplest peak-to-average power ratio reduction schemes for orthogonal
frequency division multiplexing (OFDM). Deliberately clipping the transmission signal degrades system
performance, and clipping mitigation is required at the receiver for information restoration. In this paper,
we acknowledge the sparse nature of the clipping signal and propose a low-complexity Bayesian clipping
estimation scheme. The proposed scheme utilizes a priori information about the sparsity rate and noise
variance for enhanced recovery. At the same time, the proposed scheme is robust against inaccurate estimates
of the clipping signal statistics. The undistorted phase property of the clipped signal, as well as the
clipping likelihood, is utilized for enhanced reconstruction. Furthermore, motivated by the nature of modern
OFDM-based communication systems, we extend our clipping reconstruction approach to multiple antenna
receivers andmulti-user OFDM.We also address the problem of channel estimation from pilots contaminated
by the clipping distortion. Numerical findings are presented that depict favorable results for the proposed
scheme compared to the established sparse reconstruction schemes.

INDEX TERMS Clipping, PAPR reduction, OFDM, multi-user communication, channel estimation,
Bayesian sparse signal estimation.

I. INTRODUCTION
The problem of high peak-to-average power ratio (PAPR)
in orthogonal frequency division multiplexing (OFDM) has
received considerable research interest in the past. As the
power amplifiers (PA) have a nonlinear response for higher
input levels, inflated PAPR causes nonlinear distortion.
Though power back-off in the operating point of the PA
will reduce the nonlinear distortion, it is not desirable as it
results in inefficient operation of the PA and reduced bat-
tery life of the mobile terminal. Hence PAPR reduction in
OFDM signalling is a necessity for the linear and power
efficient operation of the PA. Some of the transmitter-based
PAPR reduction schemes include coding, partial transmit
sequence (PTS), selected mapping (SLM), interleaving, tone
reservation (TR), tone injection (TI) and active constellation
extension (ACE) [3]–[7]. The computational requirements
of the aforementioned schemes make them unsuitable for

applications where the transmitter complexity is a bottleneck,
especially when the number of sub-carriers is large [8].
Clipping is one simple and low-complexity PAPR reduc-

tion method. The clipping operation is performed such that
the magnitude of the time-domain OFDM signal be lim-
ited to a pre-specified threshold. The clipping operation,
however, is nonlinear and causes out-of-band radiation aswell
as in-band distortion. The out-of-band power spill interferes
with adjacent channels and reduces power spectral efficiency.
Though filtering can be used to significantly reduce the out-
of-band radiation, it results in peak regrowth. A compromise
between out-of-band spill and peak regrowth can be reached
by iterative clipping and filtering operations [9]–[12]. Unlike
out-of-band radiation, the in-band distortion can be taken care
of at the receiver. However, if not, it results in significant
performance loss evidenced e.g., by the high bit error
rate (BER).
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Recently the sparsity of the clipping signal has been
exploited and compressed sensing (CS) schemes were used
for clipping recovery at the receiver. The sparse nature of
the clipping signal is evident as it originates when a high
PAPR signal (with only a few high peaks) is subjected to
a thresholding operation. Here it is noteworthy that the per-
formance and applicability of any CS-based PAPR reduction
scheme is mainly limited by two factors: the complexity
of the sparse signal reconstruction scheme and the num-
ber of reserved/measurement tones. In [13] Al-Safadi and
Al-Naffouri utilized augmented CS for signal recovery in
severe clipping scenarios. However, the drawback of [13] is
the severe hit taken on the data rate due to dedicated mea-
surement tones. A CS-based approach using reliable carriers
(RC) as measurement tones with no compromise on data
rate is proposed in [14]. However, this method is tailored
for one-user, single-input-single-output systems and lacks the
generality required by multiple-receiver antenna systems and
multi-user communications.

In this work, we focus on deliberate clipping-based PAPR
reduction. The time-domain OFDM signal is limited to a pre-
specified threshold and the sparse clipping signal is recon-
structed at the receiver using a low-complexity Bayesian
recovery algorithm. The proposed reconstruction scheme is
agnostic to the signal statistics and utilizes a priori informa-
tion about the additive noise, the sparsity rate of the signal and
the clipping threshold. However, if accurate estimates of
these quantities are not available, it can bootstrap itself
and estimate them from the data. The proposed scheme
also utilizes the a priori information about the undistorted
phase of the clipped signal for enhanced recovery. Fur-
ther, the recovery algorithm focuses on the most proba-
ble clipping locations by obtaining the clipping likelihood
from a comparison between the magnitude of the received
data samples and the clipping threshold. At the receiver,
some of the data sub-carriers are designated as RCs for
sensing the clipping distortion (based on the criteria pro-
posed in [14]) and hence there is no data loss in using
the proposed clipping reconstruction scheme. Considering
that most modern communication standards use multiple
antennas at the receiver, the proposed scheme is extended
to the case of single-input multiple-output (SIMO) systems.
It is also highlighted that the problem of clipping estima-
tion in multi-user communication (i.e., orthogonal frequency
division multiple access (OFDMA) systems) is not straight-
forward. The complications arise due to the fact that clipping
distortions are different users overlap in frequency-domain
and are indistinguishable from one another. In light of this, a
clipping reconstruction scheme for OFDMA systems is also
framed. The proposed multi-user clipping recovery scheme
initially performs joint estimation of clipping distortion from
all users. This is followed by the decoupling stage, in which
subsystems belonging to each user are formed such that
they are interference free from other users’ distortion. Then
the clipping is individually recovered on each decoupled
subsystem. Lastly, we consider the channel estimation

problem for clipped OFDM and present two data-aided chan-
nel estimation schemes. The main idea is to use RCs in
addition to the pilot sub-carriers for enhancedminimummean
square error (MMSE) estimation.

A. NOTATION
Unless otherwise noted, scalars are represented by italic
letters (e.g., N ). Bold-face lower-case letters (e.g., x) are
reserved to denote time-domain vectors, whereas frequency-
domain vectors are represented using bold-face upper-case
calligraphic letters (e.g., X ). Bold-face upper-case letters
are associated with matrices (e.g., X). The symbols x̂, x(i),
xT and xH respectively represent the estimate, ith entry, trans-
pose and Hermitian (conjugate transpose) of the vector x.
The operator | · | operating on a scalar (e.g., |x(i)|) will give
the absolute value whereas operating on a set (e.g., |S|) will
give the number of elements in S. Further, E[·], I and 0
denote the expectation operator, identity matrix and the zero
vector respectively. The operator diag(X) forms a column
vector x from the diagonal of X and diag(x) constructs a
diagonal matrix X with x on its diagonal. Finally, X u repre-
sents the uth portion of the vector X , where X is partitioned
in U segments.

B. KEY CONTRIBUTIONS
The main contributions of this work can be summarized as
follows

• A low-complexity Bayesian clipping recovery scheme is
presented, that has the following features

◦ It is agnostic to the signal statistics.
◦ It uses a priori information about the additive

noise, the sparsity rate and the threshold. Further,
it can bootstrap itself if accurate estimates of these
parameters are not available.

◦ It utilizes the a priori information of the undis-
torted phase and the clipping likelihood.

◦ It has a data-aided version that makes use of the
RCs in place of reserved sub-carriers hence con-
serving the data rate.

• It is able to make use of the multiple receive antennas for
enhanced clipping recovery.

• It can be extended to the multi-user OFDMA systems.

In addition, this paper proposes effective channel estimation
strategies that work in spite of pilot contamination from
clipping distortion.

C. PAPER ORGANIZATION
The remainder of the paper is organized as follows. Section II
introduces the data model for clipped OFDM signals and
Section III formulates the proposed Bayesian clipping recon-
struction scheme. The proposed scheme is then extended to
SIMO systems in Section IV. A multi-user clipping recovery
scheme is outlined in Section V. Section VI presents the
data-aided channel estimation strategies for clipped OFDM
and Section VII concludes the paper.
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II. DATA MODEL FOR CLIPPED OFDM
In OFDM transmission, the incoming bitstream is first
divided intoN parallel streams and is thenmodulated using an
M -QAM constellation {A0,A1, . . . ,AM−1}. The modulated
data X = [X (0),X (1), . . . ,X (N − 1)]T, is converted to
the time domain using the inverse discrete Fourier trans-
form (IDFT) i.e., x = FHX . Here F is the DFT matrix whose
(n1, n2) element is given by

fn1,n2 = N−1/2e−2πn1n2/N , n1, n2 ∈ 0, 1, . . . ,N − 1.

The time-domain signal x has a high PAPR and is subjected
to an amplitude limiter for PAPR reduction. The resulting
clipped signal xp is described by

xp(i) =

{
γ exp( 6 x(i)) if |x(i)| > γ

x(i) otherwise,
(1)

where xp(i) is the ith element of the signal after clipping,
γ is the limiting threshold and 6 x(i) is the phase of x(i).
The clipping ratio (CR) and threshold γ are related by
CR = γ /σx , where σx is the root mean squared power of
the OFDM signal. The hard clipping in (1) is equivalent to
the addition of a sparse signal c (with active elements only
at the clipping locations) to the time-domain signal x. The
clipped signal xp is then given as

xp = x+ c. (2)

The equivalence of (1) and (2) dictates that the phase of cmust
be the opposite of the phase of x on the clipping locations
and zero everywhere else. Thus, the addition of c leaves the
phase unaltered; i.e., 6 xp(i) = 6 x(i) = 6 c(i) + π ∀ i. This
undistorted phase property is important and is exploited in
the development of the proposed reconstruction scheme.

The clipped signal xp is transmitted through a channel
of length Nc with impulse response h = [h(0), h(1), . . . ,
h(Nc − 1)]T, where the channel tap coefficients form a
zero-mean complex Gaussian independent and identically
distributed (i.i.d.) collection. The received time-domain sig-
nal can be written as

y = Hxp + z, (3)

where H is the circulant channel matrix and z is the additive
white Gaussian noise (AWGN) with z ∼ CN (0, σ 2

z I). The
circulant nature ofH allows us to diagonalize it using the DFT
matrix F and writeH = FHDF, where D is a diagonal matrix
with the channel frequency response on its diagonal. The data
model and the proposed reconstruction scheme are developed
assuming perfect channel knowledge at the receiver. The
procedure for acquiring the channel impulse response (CIR)
in clipped OFDM is outlined in Section VI.

The frequency-domain received signal, obtained from (3)
by the DFT operation, can be written as

Y = DX p +Z = D(X + C)+Z, (4)

where Y = Fy and X p,X ,C,Z are similarly defined.
Equalizing the received data in (4) results in

X̂ = D−1Y = X + C + D−1Z︸ ︷︷ ︸
:=Z†

= X +Z†, (5)

where Z† is the combined additive noise and clipping
distortion. A naïve receiver will disregard the presence of
clipping noise in (5) and will use maximum likelihood (ML)
decoding on X̂ to obtain the estimated transmitted signal
bX̂ c (the operator b·c is used to denote the ML decisions
or equivalently rounding to the nearest QAM constellation
point). However, a receiver employing CS reconstruction will
exploit the sparse nature of c for its estimation and hence
removal.
As the clipping signal c is sparse in the time-domain,

its frequency-domain counterpart C perturbs all sub-carriers
alike as the time and frequency-domains are maximally
incoherent. Utilizing this incoherence via CS, it is possible
to reconstruct an N -dimensional time-domain sparse vector
with only P random projections on the frequency-domain,
where P � N . These projections can be made using ran-
domly allocated pilot tones as in [13], but doing so reduces
the data rate. In this work, we avoid this and use a data-aided
approach to estimate c as we describe below.
Given the equalized signal X̂ at the receiver, we expect

the following: for some sub-carriers, the perturbationZ†(i) is
strong enough to take X (i) out of its correct decision
region, i.e., bX̂ (i)c 6= X (i), while for others with a milder
perturbation, we expect to have bX̂ (i)c = X (i). The subset of
data sub-carries that satisfy bX̂ (i)c = X (i) are called RCs and
fortunately constitute amajor part of all sub-carriers. To select
this subset, we note that the major source of perturbation
is the clipping distortion, especially for high signal-to-noise
ratio (SNR). Hence, from (5), we can write the reliability
function of the ith sub-carrier in terms of Z†(i) as

R(i) =
p(Z†(i) = X̂ (i)− bX̂ (i)c)∑M−1

k=0,A(k)6=bX̂ (i)c
p(Z†(i) = X̂ (i)−A(k))

, (6)

where p(·) represents the pdf of Z†, which is assumed to be
zero mean Gaussian with variance σ 2

z (see [14] for details).
In (6), the numerator is the probability thatZ†(i) does not take
X (i) beyond its correct decision region and the denominator
sums the probabilities of all possible incorrect decisions that
Z†(i) can cause.
The utilized reliability criterion is unlike the Euclidean

distance reliability criterion (employed in [15]) that relies
solely on the information of the distance between the received
data point and the closest constellation point in A. To this
end, note that in Fig. 1, though X̂1 and X̂2 are equidistant
from X , they have different reliability values. This is owing
to their distances with their next nearest neighbors,Xa andXb
respectively. The denominator in (6) accounts for this fact,
hence, yielding a more sophisticated reliability metric. The
detailed investigation of this reliability criterion is reported
in [14]. After obtaining the reliability R(i) for each carrier i,
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FIGURE 1. Geometrical representation of the adopted reliability criteria.

we pick the P sub-carriers with the highest reliability values
and use them as measurement tones to recover sparse clipping
vector c. Consider an N×N binary selection matrix S, with P
ones along its diagonal, corresponding to the locations of the
P most reliable sub-carriers. Using S we construct a P × N
matrix SP by pruning S of its zero rows. Subtracting DbX̂ c
from (4) and using SP, we have

SP(Y − DbX̂ c) = SPD(X − bX̂ c)+ SPDFc+ SPZ,
Y ′ = 9c+Z ′, (7)

where Y ′ = SP(Y − DbX̂ c), 9 = SPDF and Z ′ = SPZ .
To establish the equality in aforementioned equation, we
have used the fact that on RCs bX̂ (i)c = X (i), and hence
SPD(X − bX̂ c) = 0. A typical CS problem of the form (7),
with P measurements and N dimensional sparse unknown
(P� N ) can be solved using any sparse reconstruction algo-
rithm see [16]–[21]. However, these schemes are complex and
do not utilize the clipping likelihood and undistorted phase
property of the clipped signal.

III. PROPOSED CLIPPING RECONSTRUCTION SCHEME
From (1) and (2), and the discussion that followed, it is
known that the clipping vector c and the signal vector x are
anti-phased. Hence, the phase information can be deduced
at the receiver from the time-domain equivalent of (5), i.e.,
x̂ = x + c + H−1z. Since 6 c(i) = 6 x(i) − π ∀ i, only the
support and the magnitudes of the active clipping elements
are left unknown. Hence we can rewrite (7) as

Y ′ = 92ccm +Z ′

= 8cm +Z ′, (8)

where 8 = 92c. Here the matrix 2c contains the
phases of c on its diagonal, i.e., 2c ∼= diag(6 x̂(0) − π,
6 x̂(1) − π, . . . , 6 x̂(N − 1)− π ) and the vector cm consists
of the magnitudes of the elements of c. Since the aforemen-
tioned system of equations is complex with real unknown,
we can split the real and imaginary parts (designated as

Re{·} and Im{·}, respectively) to obtain a system with
2P equations[

Re{Y ′}
Im{Y ′}

]
=

[
Re{8}
Im{8}

]
cm +

[
Re{Z ′}
Im{Z ′}

]
,

Ȳ = 8̄cm + Z̄. (9)

Henceforth, we simply use c and not cm to denote the
unknown signal, with the understanding that c contains only
the magnitudes and rewrite (9) as

Ȳ = 8̄c+ Z̄. (10)

To solve the under-determined system in (10), we employ a
Bayesian sparse reconstruction scheme. A tractable Bayesian
approach (e.g., [17]) assumes Gaussian distribution on active
elements of the unknown signal. However, this is not the case
here, as the nonzero elements of c are the differences of a
Rayleigh distributed elements |x(i)| and a constant γ . As the
unknown is clearly non-Gaussian, we pursue a Bayesian
approach introduced in [22] that does not make any assump-
tion on the statistics of the nonzero elements of c.

Let us compute the MMSE estimate of c given the
observation Ȳ as

ĉmmse , E[c|Ȳ] =
∑
S

p(S|Ȳ)E[c|Ȳ,S], (11)

where the sum is executed over all possible 2N support
sets S of c. Now assuming that the support S is perfectly
known, (10) reduces to

Ȳ = 8̄ScS + Z̄, (12)

where 8̄S is formed by selecting the columns of 8̄ indexed
by support S. Similarly, cS is formed by selecting entries
of c indexed by S. Since the distribution of c is unknown,
computingE[c|Ȳ,S] is very difficult, if possible at all. Thus,
we resort to the best linear unbiased estimate (BLUE) as an
estimate of c, as given below1

E[c|Ȳ,S]← (8̄
H
S8̄S )

−18̄
H
SȲ . (13)

Using Bayes rule, the posterior in (11) can be written as

p(S|Ȳ) =
p(Ȳ|S)p(S)

p(Ȳ)
, (14)

where p(Ȳ) is common to all posteriors, and hence can be
ignored. Note that Bayesian reconstruction schemes (e.g., sup-
port agnostic Bayesian matching pursuit (SABMP) [22] and
fast Bayesian matching pursuit (FBMP) [17]) assume that
the elements of the unknown are activated according to a
Bernoulli distribution with success probability ρ. Hence,
p(S) is calculated as p(S) = ρ|S|(1− ρ)N−|S|. However, for
the problem at hand, it is reasonable to assume that c(i) is an
active element if the received sample x̂(i) is in close proximity

1If c and Ȳ are jointly Gaussian as is often assumed, then
E[c|Ȳ,S] =

(
8S8

H
S + σ

2
z σ
−2
c I

)−1
8H
S Ȳ , which applies if the statistics

of C andZ are white, Gaussian and known.
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to γ . So, instead of assigning a uniform probability ρ to all
samples, we assign higher probabilities to the samples that
correspond to the elements of x that are more likely to have
been clipped. To do so, we define a weight vector w with
elements w(i) = γ − |x̂(i)|, and assign higher probabilities to
the locations where the aforementioned difference is small.
One such assignment is ρi = e−w(i), where, ρi is the proba-
bility of a clip on the ith element (ρi’s are normalized to have
max(ρi) = 1). This gives us

p(S) =
∏
i∈S

ρi
∏
k∈S̄

(1− ρk ), (15)

where S ∩ S̄ = ∅ and S ∪ S̄ = {1, 2, . . . ,N }.
We are left with the calculation of p(Ȳ|S), which is diffi-

cult owing to the non-Gaussian nature of cS . To get around
this, we note that Ȳ is formed by a vector in the sub-
space spanned by the columns of 8̄S plus a Gaussian noise
vector Z̄ . This motivates us to eliminate the non-Gaussian
component by projecting Ȳ onto the orthogonal complement
space of 8̄S . This is done by pre-multiplying Ȳ by a projec-
tion matrix P⊥S defined as

P⊥S = I− PS = I− 8̄S
(
8̄

H
S8̄S

)−1
8̄

H
S .

This leaves us with P⊥S Ȳ = P⊥S Z̄ , which is Gaussian with
zero mean and covariance

K = E[(P⊥S Z̄)(P⊥S Z̄)H] = P⊥SE[Z̄Z̄H
]P⊥S

H

= P⊥Sσ
2
z P
⊥

S
H
= σ 2

z P
⊥

S . (16)

Thus, we have,

p(Ȳ|S) =
1√

(2πσ 2
z )2P

exp
(
−

1
2
(P⊥S Ȳ)HK−1(P⊥S Ȳ)

)
.

(17)

Simplifying and dropping the pre-exponential factor yields,

p(Ȳ|S) ' exp
(
−

1
2σ 2

z
‖P⊥S Ȳ‖

2
)
. (18)

Substituting (15) and (18) in (14) gives the expression
for posterior probability, which is then used to compute the
sum in (11). However, this computation is challenging as
the number of support sets is large (typical values of N in
OFDM are 256 and 512). The computational burden can be
reduced with a slight compromise on the performance, if
this sum is computed only on the support sets correspond-
ing to the significant posteriors Sd (see [22] for details).
Thus, we can write the approximated MMSE estimate of
c as

ĉammse , E[c|Ȳ] =
∑
Sd

p(S|Ȳ)E[c|Ȳ,S]. (19)

Now, we pursue a greedy approach [17], [22] to find
a subset of the dominant support Sd . Note that though
this approach of sparse signal reconstruction was presented

TABLE 1. Summary of the proposed WPA-SABMP scheme.

in [22], the proposed clipping recovery scheme has two
differentiating characteristics. First is the use of the weighted
p(S) in (15), which helps to find the dominant support much
faster than the un-weighted case. Second is the phase augmen-
tation, which results in improved reconstruction accuracy.
The Bayesian reconstruction approach discussed above

relies on the a priori information about the sparsity rate ρ,
the noise variance σ 2

z and the clipping threshold γ to recon-
struct the vector c. The threshold γ can be communicated to
the receiver during the signalling period, ρ can be obtained
from previously accumulated data and any SNR estimation
scheme can be used to find σ 2

z . Nonetheless, if accurate
estimates of these quantities are not available, the proposed
scheme can bootstrap itself and estimate these parameters
from the data. Specifically, in the absence of accurate esti-
mates, we start with initial rough estimates of the parameters
and obtain ĉ. The estimate of c is then used to refine the
parameters σ̂ 2

z and ρ̂, and these parameters are now used to
obtain an improved estimate of c. This procedure can continue
iteratively, until a predetermined criterion is satisfied. The
computational complexity of the proposed reconstruction
scheme is of the order O(EmaxρPN 2), if an N -dimensional
signal with ρN non-zero elements is estimated using
P measurements and the parameter refinement is performed
Emax times [22]. As the proposed scheme uses weighting
and phase augmentation we term it weighted and phase aug-
mented (WPA)-SABMP. An algorithmic description of the
WPA-SABMP reconstruction scheme is provided in Table 1.

A. SIMULATION RESULTS
The SABMP algorithm was proposed in [22] and was
shown to outperform other Bayesian and `1-based sparse
recovery algorithms. Hence, in this work we compare the
proposed WPA-SABMP scheme with SABMP [22], the
phase augmented version of FBMP i.e., PA-FBMP and
the weighted and phase augmented-LASSO (WPAL) [13].
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As a benchmark, we use the oracle-least squares (LS) solution
(i.e., the case when the support is perfectly known and the
LS solution is calculated on the known support). In all simu-
lations it is assumed that the statistics (i.e., the mean and the
variance) of the clipping signal are not known. These schemes
are compared for their BER performance and practical
complexity. The practical complexity is calculated as the
average runtime for signal recovery and is presented by
subgraphs within the main figures (the independent axes of
the subgraph and the corresponding main figure are always
identical).

An OFDM system with 512 sub-carriers is simulated. The
64-QAM alphabet is used for modulation and the data is
passed through a channel with 10 i.i.d. taps of unit variance.
All simulation results are averaged over 5000 bit errors unless
otherwise noted.

1) EXPERIMENT 1
In this experiment, sparse reconstruction schemes are tested
for their BER performance. The CR is kept fixed at
CR = 1.61 and the number of RCs is set to P = 128.
It can be observed from the results in Fig. 2 that the pro-
posed scheme provides significant gain over existing recon-
struction schemes and attains a BER very close to the
oracle-LS. Further, it can be noticed from the subgraph that
among the compared schemes, WPA-SABMP is the least
complex clipping reconstruction scheme.

FIGURE 2. BER versus Eb/N0 (CR = 1.61, P = 128).

2) EXPERIMENT 2
In this experiment, Eb/N0 is kept fixed at 27 dB and the
number of RCs P used for reconstruction is varied from
75 to 175. Observe (from Fig. 3) that if P is reduced,
the reconstruction accuracy of SABMP and PA-FBMP is
reduced, however, WPA-SABMP and WPAL show robust-
ness against reduced P. Though WPAL has good recon-
struction accuracy in the range of interest, it is the most
complex algorithm among the compared schemes. Further,

this complexity is elevated with increasing P. The time graph
also shows that the WPA-SABMP has least complexity and it
varies only slightly with P.

FIGURE 3. BER versus P (CR = 1.61, Eb/N0 = 27dB).

3) EXPERIMENT 3
In this experiment, the performance of the proposed scheme is
tested vs the CRwhile keepingEb/N0 andPfixed. It is natural
that the performance of the reconstruction schemes improves
as the clipping is reduced (i.e., for higher CR values).
However, as shown in Fig. 4, the proposed WPA-SABMP

FIGURE 4. BER versus CR (P = 128, Eb/N0 = 27dB).

scheme performs better than SABMP and PA-SABMP for all
CR values and better thanWPAL for most CR values. Further,
observe that the WPA-SABMP scheme recovers the clipping
in a small time irrespective of the CR.
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4) EXPERIMENT 4
In this experiment, we compare the performance of the pro-
posed scheme in the absence of accurate estimates of the
signal statistics (i.e., the threshold γ , the noise variance σ 2

z
and the sparsity rate ρ are not known). The results of this
experiment are depicted in Fig. 5. The WPA-SABMP (True)

FIGURE 5. BER versus CR (P = 128, Eb/N0 = 27dB, ρinit = 0.01ρtrue and
σ2

z_init = 0.01σ2
z_true).

scheme in Fig. 5 represents the case when the actual estimates
are available, WPA-SABMP (Est.) represents the case where
the actual estimates are not available but no refinement is per-
formed and WPA-SABMP (Ref.) represents the case where
the proposed scheme is run Emax = 5 times for refinement of
the initial estimates. The proposed refinement-based scheme
is compared with WPAL as it does not require any signal
statistics. The initial estimates of the signal sparsity and noise
variance are ρinit = 0.01ρtrue and σ 2

z_init = 0.01σ 2
z_true.

It is observed that using the refinement procedure, even in
the absence of accurate statistics, performance very close to
the oracle-LS can be obtained. However, as the refinement
procedure runs Emax times, it requires more execution time
than its non-refined counterpart.

IV. CLIPPING RECONSTRUCTION FOR SIMO SYSTEMS
Let us consider an OFDM communication system equipped
with L receiver antennas. At the receiver we have L indepen-
dent copies of the transmitted signal. All diversity branches
contain the same distortion signal c, convolved with the
channel impulse response hl of the lth branch. For accept-
able performance of the communication system, the dis-
tortion needs to be eliminated from all diversity branches
before the signals are combined to obtain an estimate of the
transmitted signal. The distortion-free independent versions
of the received signal can be combined using any of the
well-known diversity combining methods (e.g., equal gain
combining (EGC), selection combining (SC) and maximal

ratio combining (MRC) [23]) to obtain an estimate of the
transmitted signal.
To pursue the reconstruction of c using the scheme pro-

posed in Section III, a system of equations of the form (10)
is formulated for each diversity branch. In general, for the lth
branch we have

Ȳ l = 8̄lc+ Z̄ l, (20)

where Ȳ l is the measurement vector associated with the lth
diversity branch of the system (similar definitions apply to
8̄l and Z̄ l). Note that c is free of subscript l, as it is same for
all diversity branches.
One rather obvious approach towards estimation of c

given L systems of the form (20) is individual reconstruction
per diversity branch as shown in Fig. 6. Once the estimates of

FIGURE 6. Individual reconstruction per diversity branch.

the clipping distortion are available, they are subtracted from
the respective branches to obtain the distortion-free versions
Y̌ l = Y l − ĉ of the transmitted signal corresponding to
each branch. These signals are then combined using MRC to
obtain X̂ using the following expression

X̂ =
L∑
l=1

DH
l Y̌ l, (21)

where Dl is the diagonal frequency response matrix corre-
sponding to the lth branch. An alternative and more effective
approach is to utilize the fact that the clipping signal is same
over all diversity branches. In this relation, the L systems of
linear equations (20) can be concatenated and setup in the
following form:

Ȳ1

Ȳ2
...

ȲL

 =

8̄1
8̄2
...

8̄L

 c+


Z̄1

Z̄2
...

Z̄L

, (22)

which can be written more compactly as
−→
Y = −→8 c+

−→
Z . (23)

It is evident that with 2P measurements per diversity
branch, a total of 2LP measurements are now available
to reconstruct the sparse unknown (see Fig. 7). Once ĉ is
obtained as done in Section III for the single antenna case,
the subsequent distortion removal and MRC combining is
identical to the case of individual reconstruction.
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FIGURE 7. Joint reconstruction over all diversity branches.

A. SIMULATION RESULTS
In this experiment, the performance of the proposed joint
reconstruction scheme is compared with individual recon-
struction for two antennas at the receiver i.e., L = 2. The CR is
varied while Eb/N0 and P are kept fixed. The simulation is
averaged over 500 bit errors. The results in Fig. 8 show that

FIGURE 8. BER versus CR for SIMO-OFDM communication systems
(P = 77, Eb/N0 = 27 dB).

the joint reconstruction scheme achieves an error rate much
lower than individual reconstruction. Further, to compare the
computational complexity, we note that individual recon-
struction can be performed in parallel, therefore we consider
the time required for signal reconstruction in one branch
only. It is observed from the subgraph that the average time
taken by the joint and individual reconstruction is almost the
same.

V. MULTI-USER COMMUNICATION
In multi-user OFDM systems i.e., OFDMA, each user is
assigned a subset of sub-carriers, and each sub-carrier is
assigned exclusively to one user [24]. The time-domain signal
resulting from an IDFT on each user is clipped for
PAPR reduction. Clipping multiple users simultaneously
complicates the estimation process at the receiver. This is
because the distortion from each user is spread over all sub-
carriers and hence overlap. The frequency-domain overlap

of distortion renders many of the assumptions made in the
single-user scenario invalid. To be specific, weighting and
phase augmentation cannot be applied in multi-user clipping
estimation directly. Further, as the data on each sub-carrier is
corrupted by clipping distortion from all users (and additive
noise), the perturbations are generally strong enough to take
the data out of the corresponding decision regions and hence
the RC method is inapplicable. Hence, in multi-user clipping
estimation, we resort to data-free pilot tones for measuring
the clipping distortion.
Let us commence the formulation of a multi-user clipping

estimation strategy by generalizing the data model presented
in Section II for OFDMA systems. In this work, we consider
the two-user case for clarity of exposition; however, the pro-
posed scheme is easily extendable to the general U user case.
In the uplink of an OFDMA system, the total number of avail-
able sub-carriers N is divided between the two subscribers
and each user will be allocatedK = N/2 sub-carriers for data
transmission. The sub-carriers can be allocated adjacently
(sub-carriers (u − 1)N/K to uN/K − 1 are reserved for the
uth user) or in an interleaved manner (user u is allocated
sub-carriers u + dK − (K + 1), d ∈ {1, 2, . . . ,N/K }).
In this work, we focus solely on interleaved carrier allocation.
In the context of a complete OFDMA symbol, the frequency-
domain signal corresponding to the first user can be
written as

X 1
= [X 1(0), 0,X 1(1), 0, . . . ,X 1(N/2− 1), 0]T,

and the signal corresponding to the second user is given by

X 2
= [0,X 2(0), 0,X 2(1), 0, . . . ,X 2(N/2− 1)]T.

The time-domain signal for the uth user (i.e., xu) is obtained
by taking the IDFT of X u. To reduce the PAPR, the sig-
nals xu are clipped as given by (1); at the receiver we have
y = H1(x1 + c1)+H2(x2 + c2)+ z. The frequency-domain
received signal can be obtained by the DFT operation as

Y = D1X 1
+ D1C1

+ D2X 2
+ D2C2

+Z. (24)

Note that, although the channel frequency responsesDu are
diagonal matrices of size N × N and hence are overlapping,
the matrix D comprises only the portions of Du, belonging
to the uth user band, which is denoted by Du. Hence, we can
write

Y = DX + D1C1
+ D2C2

+Z, (25)

whereX = X 1
+X 2. In the absence of distortion (i.e., when

D1C1
= D2C2

= 0), the receiver could easily separate
the users (as they occupy different carriers) and equalize the
users’ channels (as in (5)) to recover the transmitted data.
Mathematically, we canwriteYu

= DuX u
+Zu, whereYu is

the portion of Y confined to the carriers of the uth user
(a similar definition applies to Du,X u and Zu). Upon equal-
izing, we obtain

X̂ u
= (Du)−1Yu

= X u
+ (Du)−1Zu. (26)
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The noisy estimate X̂ u is then rounded to the near-
est constellation point (bX̂ u

c). However, in the presence of
distortion, clipping needs to be estimated and cancelled
before the equalization step of (26).

Now to demonstrate how clipping distortion can be
estimated, we re-write (25) as

Y = DX + [D1D2]
[
C1

C2

]
+Z

= DX + [D1D2]
[
F 0
0 F

] [
c1

c2

]
+Z, (27)

where we have made the substitution Cu = Fcu. Using a
selection matrix SP we proceed by projecting Y onto the
subspace spanned by the reserved carriers. This yields

SPY = SP(DX + [D1D2]
[
F 0
0 F

]
c+Z)

i.e., Y ′ = 9c+Z ′. (28)

The clipping c can be recovered from the under-determined
systems in (28) by sparse signal reconstruction. However, the
assumptions used for weighting and phase augmentation in
earlier parts of this paper are no longer valid. Though the
signal can be recovered using sparse signal recovery tools
(e.g., FBMP, SABMP and `1-optimization), in the multi-user
scenario this is not really effective especially as the number
of users gets larger. For example, in the two-user scenario
of (25), the sparse vector is twice as large and could have
twice the number of active elements. As such, to maintain
the quality of the estimate in two-user scenario, we need to
double the number of free carriers, which will reduce the
throughput. Alternatively, here we get by with the estimate
obtained from (28) and once these estimates are available we
proceed in a decoupled manner to improve them.

Once the clipping signals are initially reconstructed
using (28) (i.e., joint estimation), it is possible to set up
two uncoupled systems of equations for user 1 and 2
respectively. After the isolated systems are formed, sparse
clipping reconstruction can be performed for each user for
enhanced recovery. Therefore, the crux of the proposed
reconstruction scheme can be summarized in the following
two steps: 1) Estimate c = [c1Tc2T

]T via joint sparse recon-
struction using (28) and 2) Decouple the two systems of linear
equations corresponding to user 1 and user 2 and perform
clipping reconstruction for each user.

To obtain the decoupled systems, we modify the approach
initially proposed for channel estimation [25] (we term this
approach the contaminated pilot approach). It was noted that
as the clipped signal is transmitted (transmitted pilots are also
clipped) it is not optimal to use the ideal pilot sequence at
the receiver as a reference for channel estimation. Instead, the
clipped pilot sequence was first estimated at the receiver and
then used for enhanced channel estimation. As the clipped
pilots are used in [25] instead of clean pilot signals, we call
this scheme the contaminated pilot approach. In this work,
we use the idea of reconstructing the clipped version of

the transmitted signal at the receiver to form the decoupled
systems. To do that, the initial estimate of c obtained
using (28) is subtracted from (25) to get

Ycs = Y − [D1D2]
[
F 0
0 F

]
ĉ = DX +Z ′. (29)

We proceed by extracting the carriers allocated to user u
and get Yu

cs, which is then equalized using (26) to obtain
X̂ u

= (Du)−1Yu
cs. Now, we estimate the transmitted

frequency-domain signal by making the ML decisions bX̂ u
c.

The time-domain signal is obtained by IDFT as x̂u =
FH
bX̂ u
c. This time-domain signal is then clipped using (1)

to get x̂up. Now the difference between the clipped and un-
clipped versions of x̂u i.e., ĉu = (̂xup − x̂u) is entrusted
as the improved estimate of the clipping distortion and is
subtracted from (25) to form the decoupled systems. The
stepwise procedure for formulation of the decoupled system
is outlined below:

1) Perform joint sparse signal reconstruction based
on (28).

2) Subtract the estimated distortion ĉ from (25) to obtain

Ycs = Y − [D1D2]
[
F 0
0 F

]
ĉ = DX +Z

3) Get Yu
cs = DuX u

+ Zu by extracting user
u’s sub-carriers.

4) Equalize Yu
cs using (26) and obtain (bX̂ u

c).
5) Using pilots and bX̂ u

c, form a time-domain signal x̂u.
6) Obtain x̂up from x̂u using (1) and obtain Ĉu = X̂ u

p−X̂ u.
7) Obtain Y ū

= Y − DuĈu = DX +DuCu+Z, ū 6= u
based on (25).

Note that Y ū is decoupled from user u’s clipping. Now,
with this decoupled system for user ū, we can extract the
sub-carriers allocated to user ū to form Y ū

= DūX ū
+

DūCū +Z ū and reconstruct cū using sparse recovery.

A. SIMULATION RESULTS
The OFDMA system with two users is simulated using
512 sub-carriers and 64-QAM modulation. Each user is
assigned a total of 256 sub-carriers in an interleaved fashion.
The number of reserved tones used for CS measurements is
Pu = 75 for u = 1, 2. The threshold for both users is
chosen such that CR = 1.61. For sparse signal reconstruction
FBMP [17] is used and the results are presented (in Fig. 9)
that compare the proposed (two-stage recovery) scheme with
the joint estimation scheme. It can be seen that joint recon-
struction of the clipping distortion gives very little gain in
BER. However, the proposed decoupling-based two-stage
multi-user clipping reconstruction scheme significantly
improves the BER and achieves the no clipping rate for
high Eb/N0.

VI. CHANNEL ESTIMATION IN THE PRESENCE
OF CLIPPING
Clipping the transmission signal results in pilot contamina-
tion, hence the MMSE estimation based on these pilot signals
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FIGURE 9. BER versus Eb/N0 for multi-user clipping recovery scheme
(CR = 1.61, Pu = 75).

is not optimal. In this section, we discuss the channel estima-
tion problem for clipped OFDM and present data-aided CIR
estimation strategies.

The received OFDM signal is given in (4) and can be
written as

Y = DX + DC +Z = DX +Z 8, (30)

where Z 8
= DC + Z is the combined AWGN noise and

clipping distortion. Let us define D , diag(D) =
√
N F̄h

(where F̄ represents the N × Nc partial DFT matrix obtained
by pruning F of its lastN−Nc columns). Now note thatDX is
a product of a diagonal matrix and a column vector, and hence
we can exchange the roles of D and X by rewriting (30) as

Y = diag(X )diag(D)+Z ′ = diag(X )D +Z ′

=
√
Ndiag(X )F̄h+Z ′ = Xh+Z ′, (31)

where X ,
√
Ndiag(X )F̄. For channel estimation in

OFDM, Q equally spaced pilot signals are inserted at the
transmitter [26]–[28]. Based on this known pilot sequence,
the receiver finds the MMSE estimate of the channel. Let
Iq denote the index set of the pilot locations, thenwe canwrite
YIq = XIqh + Z ′Iq , where UIq prunes U of all rows
except for the rows belonging to Iq. Now theMMSE estimate
of h can be obtained by solving the regularized LS problem,
ĥ = argmax

h
{‖YIq − XIqh‖

2
R−1Z ′
+ ‖h‖2

R−1h
} where Rh =

E[hhH] = σ 2
h I. Further, by ignoring the clipping noise

component of Z ′, we can write RZ ′ = E[Z ′Z ′H] =
σ 2
z I (the subscript Iq of Z ′ is dropped here for notational

convenience). Solving this LS problem yields [29]

ĥ = XH
Iq (XIqX

H
Iq + (σ 2

z /σ
2
h )I)
−1YIq . (32)

Increasing the number of pilot tones for CIR estimation
results in improved estimation accuracy. However, generally
it is not feasible to spare additional pilots as it reduces the

data rate. In this work, we increase the number of mea-
surements without increasing the number of reserved pilots
by using RCs (for the procedure to find the RCs see the
discussion following (5)). Let Ir denote the index set of the
RCs and the pilot carriers. We can now retain these carriers in
estimating h and prune all other sub-carriers from (31). This
yields

YIr = XIrh+Z ′Ir , (33)

Now, we can obtain the refined estimate of h based on (32) by
replacing the pilot index set Iq with enhanced set Ir consist-
ing of the pilots and RCs. The enhanced MMSE estimation
procedure based on RCs can be summarized in the following
three steps: 1) Find the initial MMSE estimate of the CIR
using (32), 2) Find reliability R for all sub-carriers using (6)
and select R sub-carriers with the highest reliability index
as RCs and 3) Use the RCs as additional measurements (by
using (33)) and find MMSE estimate using (32).
It is important to note that however many pilots and RCs

we use to enhance the channel estimate, we are bottle-necked
by the clipping distortion. Another way to look at this is
to notice that what passes through the channel is not the
pure signal or pilots but their clipped versions. As such,
motivated by the work of [25], we first estimate the con-
taminated (pilots + RCs) and use them for enhanced MMSE
estimation. The proposed data-aided CIR estimation scheme
can be summarized as:
1) Obtain the initial MMSE estimate by using (32).
2) Equalize the received data and make ML decisions on

the equalized data i.e., bY(i)/D̂(i)c = bX̂ (i)c.
3) Find reliability R for all sub-carriers and select R

sub-carriers with the highest reliability index as RCs.
4) Construct the time-domain signal x̂ = FH

bX̂ (i)c.
5) Find x̂p by clipping x̂ using (1) and obtain X̂ p = Fx̂p.
6) Obtain (clipped pilot sequence + RCs) X pIr and

XpIr = diag(X pIr).
7) Use XpIr in (32) to obtain the improved CIR estimate.

A. SIMULATION RESULTS
For channel estimation 256 sub-carrier OFDM and
64-QAM modulation is used. A total of 16 equispaced
pilots are inserted to estimate a rayleigh fading channel
of length 10. For estimation the number of RCs is chosen
to be 16 (i.e., Q = R = 16). Fig. 10 shows the mean
squared error (MSE) results of simple MMSE estimation
(MMSE), the RCs approach (RC), the contaminated pilot
approach (CPA) [25], the proposed scheme (RC+CPA) and
the MMSE for unclipped OFDM (No clipping). The MSE
as a function of Eb/N0 results are generated by keeping
CR= 1.73. The results show that for highEb/N0 the proposed
scheme provides upto 7.2 dB advantage over simple MMSE
estimation. Finally, we test the performance of the proposed
scheme under channel estimation error. The results of this
experiment are plotted as a function of channel error variance
σ 2
h−ĥ

and are shown in Fig. 11. It can be observed from
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FIGURE 10. Eb/N0 MSE (dB) for data-aided CIR estimation
(CR = 1.73,Q = R = 16).

FIGURE 11. BER performance of the proposed scheme as a function of
the channel estimation error (CR = 1.62,Eb/N0 = 20dB).

the results, that the performance of the proposed scheme
is slightly affected for σ 2

h−ĥ
upto 10−3 and deteriorates

only after σ 2
h−ĥ

exceeds 10−3.

VII. CONCLUSION
In this work, a low complexity Bayesian clipping recovery
scheme was presented. The proposed WPA-SABMP scheme
utilizes the undistorted phase property and weighting for
enhanced clipping recovery. The proposed approach is agnos-
tic to the non-Gaussian distribution of the clipping signal
and thus outperforms other traditional Bayesian approaches
and `1-sparse recovery schemes. The WPA-SABMP scheme
also utilizes the available statistics for enhanced recovery,

however, when these statistics were unavailable the proposed
scheme bootstrapped itself and successfully estimated the
clipping distortion. Simulation results showed significant per-
formance enhancement for WPA-SABMP scheme in both
the error rate and complexity. The proposed scheme was
then extended for the SIMO-OFDM systems and numerical
findings were presented. In addition, a multi-user clipping
recovery scheme was proposed and channel estimation strate-
gies were presented for clipped OFDM signal. The simulation
results for OFDMA clipping mitigation and data-aided
channel estimation also showed favorable results.
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