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Abstract—As permissioned chain technology is getting more
and more important in blockchain technology, Hyperledger
Fabric–one of its representative–has received extensive attention.
However, previous works just focused on plaintext transmission
and made TPS optimization that cannot be applied in ciphertext
transmission situation, which is usually required on permissioned
chain under actual circumstances. This paper will be the first
to focus on private data transaction flow to optimize Fabric
TPS, without changing the normal call to the Fabric SDK
(Software Development Kit). We modify the process of writing
data to the transient database after the completion of the
simulated transaction, optimize the data structure in transient
database, and simplify the process of verifying hashes. At the
same time, professional SmartContract experiment cases and
experiment plans are designed to simulate large-scale commercial
applications, which are used to measure the TPS before and after
optimization in the Fabric private data transaction mode. The
results show that the optimized Fabric model can greatly promote
the performance of the private data transaction flow.

Keywords-Blockchain; TPS; Private; Data;

I. INTRODUCTION

The emergence of Bitcoin [1] brought blockchain technol-

ogy into people’s attention. Blockchain has public ones, such

as Bitcoin [1] and Ethereum [2] – the most popular public

chains, and permissioned ones. As there are no centralized

server nodes in public chain network, the public chain can be

open to everyone around the world, so that anyone can query

transactions, send transactions, etc. in it and each node can

freely join or exit the blockchain network, and participate in

the reading and writing of data on the chain. The underlying

technology of the public chain is mainly used in financial

fields such as releasing virtual currency. However, its poor

performance, openness and transparency make it difficult to be

applied in B2B business between the existing centralized busi-

ness community alliances. As for permissioned blockchain, the

Hyperledger Fabric is a permissioned blockchain architecture

initiated by the Linux Foundation [3], which provides a set

of enterprise-level distributed ledgers and fills the gap in

the application of the public chain between the enterprise

alliances.

The Hyperledger Fabric architecture has undergone mainly

two versions of iterations. The original 0.6 version [4] can only

be used for commercial verification and cannot be applied to

real-world scenarios. The main reasons are that all methods

are concentrated on the Peer node, merely supporting a single

channel, the structure is simple, and the scalability, security,

and isolation are inherently insufficient.

After 1.0 [5] and subsequent versions, Fabric architecture

was redesigned, and the consensus service was stripped out

into Orderer nodes, which provides functions such as trans-

action sorting, packing blocks, and submitting ledger. After

version 1.1 [6], the Hyperledger Fabric proposed the private

data as a new feature to compensate for the shortcomings of

private data protection. This feature was officially applied in

version 1.2 [7] and is continuously updated and enhanced

in subsequent releases. The latest version of the Fabric is

updated to version 1.4 [8] and will be the first LTS (Long-

Term Support) version recommended for production.

The performance of the alliance chain can be nearly 100

times higher than that of the public chain. However, due to

the inherent performance problems of the blockchain, in quite

a few cases the native Fabric system still cannot carry the

mainstream commercial activities on the Internet. Therefore,

the performance optimization problem of the Hyperledger

Fabric is still an important problem worthy of discussing.

Previous evaluation and optimization of Fabric technology

and solutions just focus on the traditional non-private data

transaction flow, and the case of evaluation use is rela-

tively simple, generally a single official transfer SmartCon-

tract(sample02) [9], which is called chaincode by a joint name

in Fabric. The invoke chaincode parameters are generally (a,

b, x): a transfers x $ to b. Those solutions usually use Cache

[10] in marshal and unmarshal, parallel processing in the

verification phase, splitting Peer function and other methods

to improve the performance of blockchain. The evaluation

version is the version before the 1.4LTS [8]. However, the

traditional data transaction process has several disadvantages

that make it unable to meet the organizer’s need to protect

private data. First, to meet the need for a group of organi-
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zations in the channel to keep some confidential data from

other organizations on the channel, they can choose to create

new channels. But each time they create a channel, there will

be additional management overhead and the new channel will

take up a lot of physical resource issues. Second, all channel

participants are unable to keep some of the data private. To

solve these problems, Fabric proposed the transaction flow

mode of private data after the 1.1 experimental version [6],

which enables endorsement, submission, or query of private

data in a subset of the organization in the channel without

having to recreate the data channel. At the same time, Orderer

nodes can only get the hash of the transaction data, and cannot

get the real information of the transaction data. This mode well

protects users’ private information.

During the transaction execution of chaincode, users obtain

and save private data to the transient database, and Peer

nodes transmit private data stored in the transient database

to other relevant nodes through the Gossip protocol. After the

dissemination is completed, the Orderer node receives the hash

value returned by the Peer node and sorts it together with

other non-private data. And after the relevant nodes compare

the hash values, all relevant Peer nodes finally update the

block information to the private database of the ledger. In this

process, the user’s transaction information is transparent to the

Orderer node. So this process is more secure than traditional

data transaction processes. The iterative versions of the Fabric

continue to optimize and enhance the private data flow. The

private data flow of Fabric has become an extremely important

way and has received more and more attention.

We focus on the performance evaluation and optimization

of the Hyperledger Fabric private data flow model. This paper

is the first to experiment the 1.4 LTS version [8] of the private

data process mode through professional experiment cases and

experiment scenarios. To improve the TPS performance of

Fabric in private data mode, we performed the following four

things:

1. Construct an experiment case that simulates a commercial

chaincode; design an experiment middleware; perform a pri-

vate data transaction flow experiment to obtain the TPS of the

Fabric benchmark.

2. Modify the process of completing the simulation transaction

into the transient database, and do dual guarantee optimization.

3. Modify the information that the data propagate to other Peer

nodes, and transmit the hash value after the endorsement to

other nodes.

4. Modify the process of comparing hashes, instead of recal-

culating the private data hash value.

This paper divides into 8 sections. The second section

introduces the Fabric1.4 [8] architecture and private data

transaction flow; the third section introduces the experimental

design; the fourth section introduces the experimental results;

the fifth section introduces related work, and the rest three

parts introduces our future work, contribution, and acknowl-

edgment.

II. FABRIC ARCHITECTURE AND PRIVATE DATA FLOW

A. Main Components of Fabric

Hyperledger Fabric’s architecture includes Client node, CA

node, Orderer node and Peer node, which includes Endorser

node, Committer node, Leader node. Fabric Architecture is

show in Fig. 1

• Client node: deploys the user’s application or CLI com-

mand terminal. The registered user obtains the legal

certificate and private key, and then executes the user’s

command. First, the transaction proposal is sent to the

endorser node for request endorsement. When enough

endorsement results are collected, the simulation result

executed by endorsement nodes is encapsulated into

ordinary transaction information and sent to Orderer node

through Broadcast service interface for sorting, and then

broadcasted to all Peer nodes after generating block in

the channel.

• CA node: as a certificate authority in the Fabric architec-

ture, CA node provides user management and certificate

services such as user registration and certificate issuance

based on the RESTful [11] interface. This type of node

manages membership information in the Fabric network,

the life cycle and rights control functions of the digital

certificate based on the digital certificate and the standard

PKI(Public Key Infrastructure) [12]. After logging in

through the client, the user registers as a legitimate user

and uses the ECDSA algorithm [13] to generate a public

and a private key. The MSP is set up to verify and manage

the user identity, and the identity certificate in the Fabric

conforms to the X.509 [12] standard specification. All le-

gal members need to obtain the identity certificate signed

by the authentication before accessing the network. It is

not necessary to access the CA node all the time while

the Fabric system is running, so the Fabric-CA node is

separated into a component.

• Orderer node: Hyperledger Fabric provides two sorting

services, solo and Kafka [14]. The solo mode means that

the Orderer is a single node, suitable for the test environ-

ment, and the multi-node kafka mode is used in the actual

product environment. Our experiment and optimization

model are based on the kafka consensus. The Orderer

node accepts the transaction message request through the

Broadcast service interface, submits the message to the

consensus component for sorting, and then adds it to the

local cache transaction message list, cuts the packaged

new block according to the rule of the block, and submits

the local ledger of the Orderer node. At the same time, the

block request message is processed through the Deliver()

service interface, and the requested block data is obtained

from the local ledger and then sent to the leader node of

the organization and broadcasted to other nodes in the

channel organization.

• Peer node: includes endorser node, committee node,

leader node, and so on. Endorser node: responsible for

simulating the implementation of the signature proposal,
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Fig. 1. Fabric Architecture

and endorsing the simulation execution result read-write

set and transaction proposal, indicating the result of

the simulation execution of the approved transaction

proposal. Committee node: All Peer nodes on the same

channel default to the committee node on the channel

organization, maintain the account ledger data of the

channel on the node, and are responsible for verifying

the transaction, calling the VSCC system chaincode to

check whether the endorsement information satisfies the

instance. The specified endorsement policy is imple-

mented, and then the MVCC checks the validity of the

transaction information and submits the local ledger. The

leader node represents the organization, establishes a

gRPC communication connection with the Orderer node

through the Deliver service interface, and requests the

ledger block data of the specified channel. At the same

time, the leader node distributes the received block data

to other nodes in the organization through the Gossip

protocol [15] to broadcast transactions. In addition, the

Peer node in the channel organization synchronizes the

missing data (block data and private data) based on the

anti-entropy algorithm [16], and timely updates all the

node books in the organization to ensure data consistency.

B. Private Data Transaction Flow

The private data flow [17] is a new feature proposed by

Fabric in version 1.1 [6]. It is officially applied in version 1.2

and is continuously supported and optimized in subsequent

versions. When private data collections are used in chaincodes,

different from traditional ones, the flow of private data can pro-

tect the confidentiality of transaction proposals, endorsements,

and submission of private data. The private data transaction

flow is shown in Fig. 2

• 1. For reading or writing private data, the client applica-

tion submits a function that calls the chaincode to request

an endorsement node belonging to the authorized orga-

nization in the collection. Private data in the chaincode

or data used to generate private data is submitted in the

Fig. 2. Private Data Transaction Flow

transient database of the transaction proposal.

• 2. The endorser node simulates the execution of the

transaction, stores the private data in the transient data

store (the local temporary storage area in the Peer node),

and sends the private data to the authorized Peer through

the gossip protocol according to the data set policy in the

configuration file.

• 3. The endorser node returns the result response of the

transaction to the client application in public data. The

result of the processing contains the key of the private

data and the hash value of the content. Private data itself

is not returned to the application.

• 4. The client application submits the received transaction
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information (including the hash of the private data) to

the Orderer node. The Orderer node packs the blocks

according to the normal flow. Blocks containing private

data hashes are distributed to individual Peer nodes. All

Peer nodes on the channel can consistently and validate

transactions that contain private data hashes without

knowing the actual private data content.

• 5. During block verification, the authorized Peer deter-

mines whether it has permission to read private data

based on the collection policy. If they have permission,

they will first verify the local private data to determine

whether they have received private data during the chain

endorsement phase; if not, they will pull from other peers.

They then validate private data and private data hashes

in the block and submit the transaction and block. After

verification and submission, a copy of the private data

is moved to the private database and the private data

write set store. Finally, the local private data in the Peer’s

transient data store will be deleted.

III. EXPERIMENTAL DESIGN

During the process of deploying the Fabric, we monitor the

hardware information and find that the Peer node occupies

more hardware resources, which is the main bottleneck affect-

ing the performance of the Fabric. In this section we will detail

our experiment cases and methods to make a good foundation

for evaluating the versatility of optimization. Besides, the

optimization processing method for each module of the Peer

node will be described in detail.

A. Experiment Tools

Fig. 3. Caliper Architecture

Caliper [18], as shown in Fig. 3, is a experiment tool of

blockchain benchmark performance that has been accepted as

the latest Hyperledger version. It can be used to experiment

different blockchain implementations. Users can do perfor-

mance experiments on their own blockchain network with a

defined experiment set, obtain a series of experiment results

and generate reports with many performance indicators, such

TABLE I
EXAMPLE RESULT

Test Name SuccFailSend RateMax LatencyMin LatencyAvg LatencyThroughput
1 initMarble 100 0 25.3tps 4.11s 1.04s 2.53s 13.4tps
2 initMarble 100 0 50.5tps 5.79s 0.95s 3.46s 13.8tps
3 readMarble 100 0 25.2tps 0.98s 0.41s 0.72s 22.0tps
4 readMarble 100 0 50.5tps 2.43s 0.59s 1.53s 23.6tps
5 transferMarble 100 0 25.3tps 3.64s 1.11s 2.47s 14.6tps
6 delete 100 0 25.3tps 3.35s 0.78s 2.19s 14.9tps

as transaction success rate, transaction throughput, transaction

latency, resources, consumption and so on. In this paper we

will use Caliper for performance evaluation.

B. Experiment Case

Using the officially provided (marbleprivate) [19], we set up

the permutation and combination of the eight experiment func-

tions and experiments with caliper. Before experimenting, the

middleware of the experiment needs to be written, which can

experiment the basic impact on TPS in detail. The chaincode

represents a standard enterprise alliance application, mainly

used to simulate a more complex asset transfer solution. The

contract has eight application requirements, four of which are

privacy-related functions:

Initmarble: creates a product, which includes the product ID,

color, size, owner, and price; Determines whether the marble

is already in the ledger, and if not, write the information of

the product into the ledger.

Delete: deletes the corresponding product according to the

product ID;

ReadPrivateDetails: queries the product information in the

private data collection in the ledger according to the product

ID;

TransferMarbel: change the owner of the product through the

transaction;

We write specific middleware that simulates normal trad-

ing scenarios between companies, including initializing new

product information, product warehousing, product inquiries,

and product outbound operations. As shown in TABLE I,

according to the actual situation, because the product out of

the warehouse must have the product in the ledger, the initial

product should be placed in the first place, the product out of

the operation placed at the end, and the other operations in

the middle can be arranged and combined. The test plan can

fully cover the basic functions of select, delete, update, insert.

It is perfectly possible to simulate an application between

enterprises. The following TABLE I shows test solution: Name
is operation name. Succ is number of successes. Fail is number

of fail. Send Rate is rate of sending a transaction. Max
Latency is maximum latency of feedback. Min Latency is

minimum latency of feedback. Avg Latency is average latency

of feedback. Throughput is rate of transactions are processed,

which is the true TPS.

C. Dual Protection through Cache Optimization

Optimization of dual protection on Peer and Orderer.
After the simulation is executed, the gossip protocol is called

to distribute the private data set to the Peer node specified
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in advance, and the local private data is stored in the local

transient private database where we optimize the code. Before

the private data is stored in the transient private database, the

cache is made in memory and the private data is stored in

the local database simultaneously. When other peers receive

data, they write to the local transient database on the one

hand, and also do the cache on the Peer node. When the

committer accounting node needs to submit private data, it

will judge. If there is no cache information, Fabric system

goes to the transient to read the information. If not, the cache

information is directly submitted to the private database. If

there is a problem such as downtime, the data in the transient

is written to the private database. Fabric system also deletes

the associated private data in the transient private database and

cleans up the expired data.

D. Parallel Calculation of Hash Value

The Process that the endorsement node sends the simu-
lation result to the client is separated into two parts. The

private data needs to be calculated hash after the endorsement,

and the endorsement node waits for the hash value of the

private data to be sent to the client together with the public

data where there will be waiting for each other. Instead, We

quarantine the sending process into tow parallel processes and

no longer send private data and public data sets together to the

client. This method can greatly reduce the waiting time when

the private data transaction type and the public data transaction

type are simultaneously transmitted.

E. Optimize the Hash Calculation Process

Monitor calculated hashes and reduce data migration.
In the consensus phase, the hash value of the private data

is transmitted to the client through the peer node together

with the public data. When the client collects transactions sent

by all the endorsement nodes, the information is sent to the

Orderer node. The private data is sent directly to the relevant

Peer node through the gossip algorithm. Through experiments,

we found that when the peer database of the Peer node receives

the private data sent by the endorsement node, there is a

process of waiting for the peer node to pull the transient

database information and to calculate the hash. In order to

reduce the waiting time, we set up a monitor to surveille

the transient database. When the private database receives

the private data, it immediately starts hashing according to

the namespace. The calculated hash value and the original

private data are combined into a new structure in the transient

database, and the namespace is used as a new index.

F. Optimize Hash Verification

Modify the Process of Comparing Hashes. Fabric native

system privat data is propagated to other nodes through

the gossip protocol. Before applying the method of private

transaction flow, it is necessary to configure trusted subgroups

in advance. Therefore, the organizations of the transaction of

the private data flow trust each other. However, there is still

possibility that data can be tampered with. So the fabric’s

native system pulls the hash value in the block of the orderer

node and then at the commit node pulls the private data in

the Cache or transient data base and calculates the hash of it.

Next, we compared hash values, if they match, the hash value

will be written to the blockchain, and the private data to the

private database from Cache or the transient database. Once

the above processes are done, the private data in the Cache or

transient database will be deleted. When comparing hashes,

we parallelize and batch the process. At the same time, we

omit the process of extracting data in the commit node, and

in combination with the process in IV-E, only the hash value

of the namespace and the corresponding private data is pulled

and compared with the hash in the orderer block. If they are

consistent, the transient information is directly transferred to

the private database. This greatly reduces the waiting time for

calculations and improves system performance. In the process

of comparing hashes, if data loss occurs due to the propagation

process of the gossip algorithm, data and hash values need to

be pulled again. This situation will only occur under extreme

conditions.

G. Security Analysis

Security performance analysis: In this section, we reorga-

nize the impact of our optimization process on the overall

security of the SwiftFabric. In the optimization process of IV-

B, the data is cached in memory. However, because of the dual

protection in the transient database, this optimization method

does not result in the absence of data sets as a result of to

physical damage such as power outages and downtime. There

is no impact on the integrity of the data. The optimization

method for IV-C is to perform parallel processing using the

characteristics of the GO language itself, and can fully utilize

the resources of the CPU for data processing. There is no

impact on the security of the fabric itself. IV-D and IV-E use

parallel computing methods and set up monitoring points to

reduce the data migration process. At the same time, the hash

value is recalculated at the peer receiving end, and the hash

value is compared to prevent the data from being tampered

with. The security of the private data flow is thus guaranteed.

IV. EXPERIMENTAL RESULTS

In this section, we will introduce the SwiftFabric per-

formance experiment result. We use a 1.4 LTS Fabric [8]

architecture, and seven local servers connected by a 1 Gbit/s

switch. Each server is equipped with two Intel Xeon CPU 1220

v5 processors @3.00 GHz, for a total of Four cores and four

threads and 16 GB of RAM. Therefore, the network problem

is not in our consideration. At the same time, kafka/zookeeper

is used as the Orderer node, and the docker [20] container is

managed by Kubernetes [21] technology. We establish a large

docker cluster to better simulate an enterprise-level alliance

permission blockchain system. We tested the private data of

the unmodified version of Fabric 1.4 [8] with the most IV-A

experimental scheme.
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Fig. 4. SwiftFabric Architecture

TABLE II
PUBLIC DATA FLOW

Test Name Succ Fail SendRate MaxLatencyMinLatencyAvgLatencyThroughput
1 initMarble 10000 0 4904.6tps 25.35s 4.12s 21.03s 511.2tps
2 readMarble 10000 0 5000.0tps 5.94s 0.42s 2.68s 2764.4tps
3 transferMarble10000 0 4881.3tps 21.39s 5.89s 22.33s 464.6tps
4 delete 10000 0 4961.6tps 20.52s 3.78s 17.69s 489.0tps

By comparing the non-private data flow test table TABLE II

and the test data TABLE III of the private data flow, we found

that the transaction process of non-private data streams does

not need to calculate the hash value because it does not need to

write the simulated transaction result to Cache or the transient

database. Instead, after the simulated transaction is completed,

the transaction result is sent to the Orderer Node, and the hash

value does not need to be recalculated when submitted to the

ledger. The tested TPS performance is averagely 1.05 times

higher than the private data. At the same time, it is obvious

that the private data flow in the case of sending TPS is 10000,

initMarble, and transferMable, and the actual Throughput of

delete is average 462.2TPS, and the Troughput of readMarble

is 2730.6TPS. Obviously, the reading ledger takes a short time

to write to the ledger. By observing the two graphs, we found

that both the transaction flow of non-private data and private

data are not very efficient, and the efficiency of writing ledger

is much lower than the reading ledger.

A. Cache Optimization

In this section, we will simulate the transaction result cache

to MemDB for processing, before the private data set is written

to the Cache or transient database. The original Fabric has

two databases, LevelDB [22] and CouchDB [23]. In order to

increase the speed, we still use the LevelDB [22] database for

TABLE III
PRIVATE DATA FLOW

Test Name Succ Fail SendRate MaxLatencyMinLatencyAvgLatencyThroughput
1 initMarble 10000 0 4900.8tps 37.14s 9.01s 21.81s 496.7tps
2 readMarble 10000 0 4999.3tps 6.23s 0.69s 3.18s 2730.6tps
3 transferMarble10000 0 4826.1tps 47.86s 12.99s 30.06s 430.1tps
4 delete 10000 0 4907.3tps 32.13s 8.78s 20.69s 460.0tps

TABLE IV
CACHE OPTIMIZATION

Test Name Succ Fail SendRate MaxLatencyMinLatencyAvgLatencyThroughput
1 initMarble 10000 0 4910.6tps 29.89s 8.21s 18.18 933.9tps
2 readMarble 10000 0 5000.0tps 5.81s 0.57s 2.66s 2750.1tps
3 transferMarble10000 0 4826.3tps 38.31s 10.96s 23.96 800.8tps
4 delete 10000 0 4906.4tps 32.13s 7.78s 16.61s 776.4tps

the transient data. This database is a native database of the

Fabric written by GO language, which is more efficient than

CouchDB [23]. The comparison of the optimized cache before

and after the optimization of the private data flow results as

shown in TABLE III and TABLE IV, the read ledger before

the optimization readMarble is 2730.6TPS, and the optimized

readMarble is 2750.1TPS. The comparison shows that the gap

between the two is not obvious. This is because the Fabric is

implemented by reading the WorldState database when reading

the ledger information. The minor difference is due to the

delay in writing data into the ledger. The TPS for writing data

operations is nearly 2 times better than the performance of

the original Fabric. It is obvious that the value of max latency

and min latency in the optimized Fabric transaction in the

private data transaction is greatly reduced compared with the

value before the optimization. This shows that the direction of

optimization we have chosen is extremely correct. At the same

time, because we are doing the cache, the data is written to

the transient database through the parallel method. When the

system reads the data in the cache, if there is a power outage

or downtime, it will enter the transient database to read the

data, or submit the data. Therefore, we use the experiment

to power off the computer during the transaction process. We

found that the private data operation before the power outage

can be read out in the ledger. This experiment shows that we

can not only improve the efficiency of reading and writing

private data, but also protect the integrity of data.

B. Optimize Results of Endorsement Nodes

Since the endorsement node calculates the hash value sep-

arately and sends the public transaction process, in order to

verify the optimization result of our endorsement node, we

design a new test case: we mixedly send the private and the

public data transaction flow as TABLE III and TABLE V

show, also the results of the original fabric architecture and the

optimized fabric. We can clearly see that due to the parallel

sending of hash values and public data, the TPS of private

data and public data are improved. In particular, public data

is increased to nearly 2.5 times because it no longer waits for

calculating hash data for private data. And the tps of private

data has also increased to 1.5 times of the original.
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TABLE V
OPTIMIZE RESULTS OF ENDORSEMENT NODES

Test Name Succ Fail SendRate MaxLatencyMinLatencyAvgLatencyThroughput
public

1 initMarble 10000 0 4998.9tps 20.00s 3.07s 18.16s 1205.2tps
2 readMarble 10000 0 5000.2tps 4.95s 0.38s 2.44s 4512.1tps
3 transferMarble10000 0 4820.1tps 18.35s 4.98s 20.15s 1187.3tps
4 delete 10000 0 4910.5tps 19.20s 3.31s 16.32s 1208.5tps

private
1 initMarble 10000 0 4905.7tps 36.28s 8.61s 20.356s 762.8tps
2 readMarble 10000 0 4999.3tps 6.05s 0.73s 3.49s 3059.3tps
3 transferMarble10000 0 4719.4tps 46.14s 11.87s 28.21s 654.3tps
4 delete 10000 0 4910.3tps 30.11s 7.93s 20.61s 716.1tps

TABLE VI
HASHES VERIFICATION

Test Name Succ Fail SendRate MaxLatencyMinLatencyAvgLatencyThroughput
public

1 initMarble 10000 0 4904.3tps 20.23s 3.61s 17.28s 1998.1tps
2 readMarble 10000 0 4999.6.0tps 3.97s 0.39s 2.08s 3129.3tps
3 transferMarble10000 0 4881.3tps 19.36s 4.71s 21.06s 1802.1tps
4 delete 10000 0 4967.5tps 18.19s 3.01s 15.06s 1846.3tps

private
1 initMarble 10000 0 4900.3tps 26.25s 6.5s 18.36s 1941.0tps
2 readMarble 10000 0 4999.6.0tps 4.80s 0.60s 2.58s 3019.6tps
3 transferMarble10000 0 4826.1tps 35.16s 8.71s 24.06s 1795.3tps
4 delete 10000 0 4907.3tps 22.19s 5.00s 15.63s 1806.9tps

C. Hashes Verification

In this section, we will focus on the comparison verification

process of the hash before the private data is submitted to

private database. When we optimize the combination of IV-D

and IV-E, the process of calculating the hash no longer waits

for the propagation process of the oderer. In the committee

node, only the namespace and the corresponding hash value

in Cache or the transient database are pulled, and no other

information. If there is a hash of the transaction block in

the compared data, the priavte data in Cache or the transient

database will be directly submitted to the private database and

the hash value will be written to the ledger. If the data flow

is lost due to network error, the hash value of the block needs

to be recalculated to ensure the integrity of the block data.

After the optimization is completed, the performance of the

fabric and the performance of the original fabric structure

are as shown in the following Table VI and Table III: The

latency of max and min is found to be significantly reduced.

And the actual written TPS is nearly 4 times better than the

performance of the original fabric.

D. Comprehensive Optimization Results

We integrate our optimization solution and integrate the

optimization method of Cache and hash-optimized methods.

Since the privacy verification phase is completed, the private

data is directly written into the privacy database through the

transient database. The hash value of the transaction data is

directly written to the ledger after completion. Therefore, the

combination of the two can collectively optimize the process

of private data transaction flows. As shown in the TABLE III

and TABLE VII. It is clear that our optimization program can

greatly improve the process of the entire private data on the

basis of the original. In Succ, Fail, Send Rate, Max Latency,
Min Latency, Avg latency, Troughtput several performance

TABLE VII
COMPREHENSIVE OPTIMIZATION RESULTS

Test Name Succ Fail SendRate MaxLatencyMinLatencyAvgLatencyThroughput
public

1 initMarble 10000 0 4904.9tps 19.20s 2.82s 17.80s 4620.8tps
2 readMarble 10000 0 5000.0tps 4.84s 0.32s 1.51s 4866.6tps
3 transferMarble10000 0 4881.5tps 19.20s 4.44s 20.15s 4432.3tps
4 delete 10000 0 4961.2tps 18.01s 2.34s 15.26s 4545.5tps

private
1 initMarble 10000 0 4900.5tps 30.23s 7.30s 18.52s 4564.1tps
2 readMarble 10000 0 4999.9tps 6.46s 0.55s 3.36s 4635.9tps
3 transferMarble10000 0 4826.2tps 40.23s 10.47s 28.53s 4299.8tps
4 delete 10000 0 4907.4tps 28.65s 5.40s 217.58s 4438.7tps

indicators have been greatly improved. Especially Troughtput

of write data. It nearly increases to 10 times of the original

one.

V. RELATED WORK

Research on Hyperledger Fabric has been a constant con-

cern of blockchain researchers. And many commercial appli-

cations have been used. We have researched a large number

of Fabric related literature. There are not many papers on

improving the performance of Hyperledger Fabric. We found

that basically all papers proposed optimization solution based

on conventional data flow methods. Thakkar P’s paper [24]

is the first one to improve the performance of Fabric. Their

work has contributed to our paper. The paper mainly divides

its work into two parts. The first half provides six instructions

to configure parameters to achieve optimal performance. In

the preliminary pre-experimental stage, our paper is in the

pre-experimental stage, and the basic configuration is optimal

according to the parameter optimization index. The second

half of the paper defines three major performance bottlenecks

in the Fabric transaction process. i. Repeat the verification

of the X.509 certificate in the endorsement phase. ii, block

verification. iii, the process of writing to the Couch database.

The author made three changes to this, 1. the endorsement

policy validation cache in the cryptographic component (3x) 2.

the concurrent endorsement policy validation (7x) 3. Enhance

the effect of batch read and write optimization of existing

couchDB in the state verification and submission phase. These

modifications can increase the overall TPS by a factor of 16.

We borrowed some of their methods in experimental design.

But since their modified version is Fabric 1.0 [5], and a

lot of content has been applied by Fabric 1.1 [6] and its

subsequent versions. Our optimized version 1.4 [8] has been

fused in many ways. Gorenflo, Christian et al [25] has mainly

proposed to increase the TPS from 3000 to 20000. 1. separate

the metadata from the data, only send the transaction ID to

the consensus layer. 2. parallel and cache, parallel and cache

are implemented in the verification endorsement policy and

semantic verification phase. 3. the use of memory to access

data on critical paths, world state stored in memory, providing

a lightweight hash table. The table can quickly obtain the data

needed for the verification phase, and put the storage of the

immutable block into the write-optimized storage cluster. 4.

resource separation, Peer’s endorsement role and committee

role are split on different physical machines. This solution
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cannot solve the problem of how to deal with data persistence

after the machine is down. Future work will be stored through

distributed data such as spark. But our work has been able to

use the leverdb database to help us do data persistence, even

if there is a machine downtime, the data can be completely

retained. And the paper is also aimed at traditional data

transactions flow.

VI. FUTURE WORK

In the work that follows, we will improve the performance

of the secure private data flow of the Hyperledger Fabric

from the consensus level. Fabric now only supports CFT

(Crash Fault Tolerance), and the future version of the Fab-

ric supports the P-BFT(Practical-Byzantine Fault Tolerance)

algorithm [26], then we can further improve the performance

of the Fabric’s private flow by studying the private data flow in

the consensus layer for the optimization method under P-BFT

[26]. We have packaged the SwiftFabric source code and will

open it to GitHub in the future.

VII. CONCLUSION

In this paper, our contribution mainly rests on the opti-

mization of private data process of version 1.4 [8] of the

Hyperledger Fabric, increasing the TPS to nearly 10 times

in our experiment environment. The main work is in the

optimization of private data flow, through detailed experiment

cases, unified experiment methods, making the experiment

results more convincing. By changing the way temporary

data is stored, we can achieve faster data caching, and more

importantly ensure data persistence. At the same time, based

one the basic characteristics of the authentication hash of the

private data flow, and given that subgroup members have high

credibility when users applying private data transaction flow,

we ensure that the efficiency of data dissemination is improved

on the one hand, and that unnecessary hash calculation time

is reduced on the other hand, which can efficiently improve

the performance of the Hyperledger Fabric.
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