
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 1

Elastic Power-aware Resource Provisioning of
Heterogeneous Workloads in Self-Sustainable

Datacenters
Dazhao Cheng, Jia Rao, Changjun Jiang, and Xiaobo Zhou

Abstract—While major Cloud service operators have taken various initiatives to operate their datacenters with renewable energy
partially or completely, it is challenging to effectively utilize the renewable energy since its generation depends on dynamic natural
conditions. In this paper, we propose and develop an elastic power-aware resource provisioning approach (ePower) for heterogeneous
workloads in self-sustainable datacenters that completely rely on renewable energy. We aim to maximize the system goodput and
control the system power consumption with respect to green power supply. ePower takes challenges and advantages of dynamic
power supply, heterogeneous workload characteristics and QoS requirements, and automatically optimizes elastic resource allocations
to workloads. The core of ePower design is a novel power-aware simulated annealing algorithm with fuzzy performance modeling for
the efficient search of an optimal resource allocation. We have implemented ePower in a university cloud testbed hosting Gridmix2
and RUBiS benchmark applications. We utilize real weather data traces to simulate the green power generation and supply in the
experiments. Experimental results demonstrate ePower can achieve near-to-optimal system performance while being resilient to
dynamic power availability. It outperforms a representative resource provisioning approach for heterogeneous workloads by at least
24% in improving system goodput and 35% in reducing QoS violations.

Index Terms—Sustainable computing, Green datacenters, Heterogeneous workloads, Dynamic power supply, Power-aware Resource
provisioning, Simulated annealing

F

1 INTRODUCTION

Today, major cloud service operators have taken various
initiatives to operate their datacenters with renewable
energy partially or completely [1]. Google, Facebook,
and Apple have started to build their own green power
plants to support the operation of their sustainable dat-
acenters. Researchers envision that datacenters at cluster
level can be completely powered by renewable energy,
e.g., solar and wind, and be self-sustainable [2], [3], [4].
Most green power plants use wind turbines and/or solar
panels for power generation. Unlike traditional energy
resources, the availability of renewable energy varies
widely during the times of a day, seasons of the year,
and the geographical locations of the power plants. Such
intermittency makes it hard for green datacenters to
effectively use renewable energy.

On the other hand, the power demand of a datacenter
is highly dependent on the resource requirements of
hosted workloads. Datacenters are commonly shared
by many users for quite different uses. An important
trend is to co-locate heterogeneous workloads, transac-
tional workloads and batch jobs, on the shared server

• D. Cheng, J.Rao and X. Zhou are with the Department of Computer
Science, University of Colorado, Colorado Springs, CO, 80918, USA.
E-mail: {dcheng,jrao,xzhou}@uccs.edu.

• C. Jiang is with the Department of Computer Science, Tongji University,
4800 Cao-An Road, Shanghai, 201804, China.
Email: cjjiang@tongji.edu.cn.

• X. Zhou is the corresponding author.

infrastructure in datacenters for resource utilization ef-
ficiency [5], [6], [7]. Such mixed application hosting
poses challenges and also opens up opportunities in the
resource management in sustainable datacenters.

First, it is difficult to control system power consump-
tion under dynamic power supply rather than a static
power budget. Most previous studies assume a static
power budget as the constraint for resource provision-
ing. However, the green power supply in a sustainable
datacenter is often time-varying and highly depends
on the natural weather conditions. It is challenging to
effectively match the power supply and demand.

Second, it is difficult to accommodate heterogeneous
workloads in a unified provisioning scheme as these
workloads could have distinct resource requirements
and performance goals. For transactional workloads,
the goal is to maximize request throughput under a
certain response time bound. It requires that resources
allocated to transactional workloads be sufficient dur-
ing the execution of short-lived requests or clients will
observe significant decline in service quality. Batch jobs
concern the job completion time in a relatively longer
term. It is required that the aggregate resource allocation
during the lifetime of batch jobs should guarantee job
completions before individual deadlines.

Dynamic green power supply and mixed application
hosting also create opportunities for joint performance-
power optimizations in self-sustainable datacenters: (1)
Although transactional workloads are sensitive to re-
source allocations, their traffic intensities vary wildly



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 2

overtime [8], [9]. Matching resources to the actual de-
mands could achieve significant power savings. (2) Batch
jobs can be temporarily delayed and compensated later
without violating the deadline. (3) Given the dynamic
power supply, a careful planning of resource allocations
to heterogeneous workloads can maximize the overall
system performance.

In this paper, we propose and develop an elastic
power-aware resource provisioning approach (ePower)
for self-sustainable datacenters that completely rely on
renewable energy. We aim to maximize the overall sys-
tem performance in terms of datacenter goodput of
heterogeneous workloads by effectively prioritizing the
power budget of workloads with respect to dynamic
green power supply. ePower takes advantages of time-
varying traffic of transactional workloads and delay-
tolerance of batch jobs to optimize the overall system
performance under dynamic power constraints.

ePower employs a novel power-aware simulated an-
nealing (SA) algorithm to search the optimal resource
allocations online. The SA algorithm prioritizes transac-
tional workloads when possible but also aims to avoid
batch job deadline miss. Based on the predictions of a
fuzzy performance model, it performs efficient search in
the space of all possible allocation combinations. ePower
is adaptive to both workload and power changes and
works automatically without human interventions.

We do not run a green powered datacenter. Instead,
we utilize weather data to simulate the real green power
generation and supply in the experiments. Given the
weather data from NREL [13], we implement solar and
wind energy prediction models [25] at the granularity of
10 minutes to obtain the green power traces.

Specifically, our contributions are as follows:
• We propose an elastic power-aware resource pro-

visioning approach for heterogeneous workloads in
self-sustainable datacenters that completely rely on
renewable energy. It maximizes the system perfor-
mance in terms of system goodput and respects the
time-varying green power supply, different work-
load characteristics and QoS requirements.

• We develop a novel power-aware SA algorithm. The
core of the SA algorithm is the design of a cooling
schedule that considers dynamic power supply and
the characteristics of heterogeneous workloads. To
support SA-based resource allocation, we further
develop a self-learning fuzzy performance model to
predict application performance during searches in
simulated states.

• We have implemented ePower on our university
cloud testbed and performed extensive evaluations
with the Gridmix2 and RUBiS benchmark appli-
cations. We utilize real weather traces to simulate
the green power supply in the experiments. Experi-
mental results demonstrate that ePower can achieve
near-to-optimal system performance while being
resilient to dynamic power availability. It outper-
forms a representative approach for heterogeneous

workloads provisioning in a datacenter [6] by at
least 24% system goodput improvement. It reduces
response time bound violation of RUBiS workload
and completion time bound violation of Gridmix2
workload by at least 35%.

The rest of this paper is organized as follows. Section 2
gives motivations on joint optimization of power and
performance. Section 3 describes the design of ePower.
Section 4 presents the details of the proposed simulated
annealing algorithm. Section 5 presents the fuzzy per-
formance modeling. Section 6 gives the testbed imple-
mentation. Section 7 presents the experimental results
and analysis. Section 8 reviews related work. Section 9
concludes the paper.

2 MOTIVATION

To improve resource utilizations, datacenters consolidate
workloads, ranging from transactional applications (e.g.,
e-Commerce website) to batch jobs (e.g., MapRedce data
analytics), on the same physical hardware. These work-
loads are inherently heterogeneous with different QoS
and resource requirements. A transactional workload
comprises short client requests and its performance is
measured based on the throughput of requests finished
within a response time target. A MapReduce batch job is
usually a long-running program with an expected com-
pletion time. While responsiveness is most important to
transactional workloads as slow responses turn away
potential customers, the delay in processing batch jobs
is more tolerable and may be compensated later.

Another salient difference between the workloads is in
their resource requirements. While the resource require-
ments of batch jobs is relatively stable during execution,
the need of transactional workloads is quite dynamic [3],
[6], [10] due to time-varying client traffic. Given a fixed
total amount of resources, it is not trivial to determine
the optimal resource allocations to these workloads.
The dynamic power supply in a sustainable datacenter
further complicates the problem. The varying power
availability changes the amount of resources available
to these workloads making an optimal allocation scheme
both workload and power dependent.

For an illustration, Figure 1(a) plots the resource
requirements of representative transactional and batch
workloads in various time intervals. We profiled
the transactional resource usage from replaying the
Wikipedia trace [11] and the batch resource usage from
the Facebook analytic workload [12]. It illustrates that
the batch workload volume is relatively stable during
the course of execution after the job is submitted. But
for transactional workload, the workload volume (e.g.,
throughput) is quite dynamic. The unit on Y-axes is the
dynamic workload volume of the transactional workload
trace normalized to its beginning workload volume. The
workload volume means throughput for RUBiS work-
load, and the size of input data for Hadoop workload.
Figure 1(b) plots the dynamic availability of green power



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 3

 0

 0.5

 1

 1.5

 2

t0 t1 t2 t3

W
o

rk
lo

a
d

 V
o

lu
m

e

Time

Transactional Workloads

Batch Workloads

(a) Resource requirements.

 300

 400

 500

 600

 700

 800

 900

 1000

t0 t1 t2 t3

P
o

w
e

r 
(w

a
tt

)

Time

Power availability

(b) Dynamic power supply.

Fig. 1. Dynamic workload resource requirements and
green power supply.

supply, which was derived from the weather condition
records in the Measurement and Instrumentation Data
Center [13]. From Figure 1, we can see that both the
transactional workload and power supply show sig-
nificant variations overtime. We identify three resource
provisioning scenarios:

1) Prioritizing transactional workloads: During the
interval [t0, t1], the transactional workload increases
while the green power supply is relatively stable
and low. Based on the projection of high power
availability in the next interval, in this interval more
resources could be allocated to the transactional
workload temporarily delaying the batch job.

2) Compensating batch jobs: During the interval [t1,
t2], green power supply increases while the trans-
actional workload stays at a low level. The delayed
batch job processing can be compensated with more
resource allocation to the batch job for its speedup.

3) Competing: During the interval [t2, t3], green power
supply decreases and the transactional workload
increases. The optimal resource allocation depends
on complex interactions between the workloads.
While the responsiveness of transactional workloads
is important, an approaching batch job deadline
should also be considered. The objective is to allo-
cate resources in a way that maximizes the overall
datacenter performance.

These challenges motivated us to develop a provi-
sioning scheme that automatically optimizes the elastic
resource allocations to heterogeneous workloads consid-
ering application QoS requirements, time-varying work-
load traffic, and dynamic green power supply. To this
end, we propose ePower, an elastic power-aware data-
center resource manager.

3 EPOWER DESIGN

ePower is a power-aware resource provisioning manager
for heterogeneous workloads that maximizes the overall
system performance in the presence of dynamic green
power supply. The key insight is that the processing
of long-running batch jobs can be temporarily delayed
(or slowed down) in order to prioritize transactional
workloads. ePower also aims to ensure that batch jobs
are able to meet their completion deadlines.

Fig. 2. The architecture and components of ePower.

Figure 2 shows the major components and their in-
teractions of ePower. It takes the availability of green
power supply as input and calculates the corresponding
resource availability under such a power budget. Based
on the amount of available resources, ePower determines
the optimal resource allocations to the workloads.

The key to the ePower design is the automatic resource
provisioning scheme that combines fuzzy performance
modeling and simulated annealing resource optimiza-
tion. Every control interval, ePower searches for a re-
source allocation with respect to overall system perfor-
mance maximization. The simulated annealing compo-
nent randomly picks up a resource allocation and queries
the fuzzy performance model for the prediction of work-
load performance. If the predicted system performance is
significantly better than the current one, ePower accepts
the new allocation. At the end of each control interval,
the performance of both workloads is fed back to ePower
to update the performance model.

In this section, we define a metric to quantify the
system performance with heterogeneous workloads and
formulate the resource provisioning as an optimization
problem. We elaborate the design of the simulated an-
nealing optimization and fuzzy performance modeling
in Section 4 and Section 5, respectively.

3.1 Quantifying System Performance

Although heterogeneous workloads have individual
measures of client-perceived performance, such as re-
quest response time and job completion time, a unified
metric is needed for cloud providers to quantify the
benefit of resource allocation. We define system good-
put as the total useful work delivered to users at a
certain period of time. Specifically, it is the amount of
effective data throughput completed by transactional
workloads or batch jobs that meet their corresponding
service level objectives (SLOs). Similar metrics have been
used to quantify system performance for transactional
workloads [14] and batch jobs [15], [16], respectively.

Formally, we define system goodput G(k) at time



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 4

interval k as the aggregate effective data throughput:

G(k) =
∑

Ei(k), i ∈ T ∪ B, (1)

where T and B are sets of transactional workloads
and batch jobs, respectively. Ei is a job’s effective data
throughput. For heterogeneous workloads, Ei is uni-
formly defined as:

Ei(k) =

∑m
j=1 d(j) ∗ δ(j)

l(k)
, j ∈ T ∪ B, (2)

where d(j) is the data size of job j in a group of m jobs
that finish during time period k, in which l(k) is the
length of interval k. Let tj be the response time of job j.
To count only useful work, decay function δ(j) discounts
the data throughput from jobs with violated SLOs:

δ(j) =


1 if tj < tsoft.
1− tj−tsoft

tsoft
if tsoft ≤ tj ≤ thard.

0 if tj > thard.
(3)

We use a SLO with two time bounds, thard and tsoft,
in the decay function. While thard sets a hard deadline
for job completion, beyond which no revenue is gener-
ated, tsoft is a soft deadline whose violation will incur
reduction in revenue. We ensure that hard deadlines to
be no long than 2 times of the soft deadlines so that
the decay function never becomes negative. Accordingly,
δ(j) considers the data delivered by job j as useful work
if the observed job finish time tj meets tsoft. Violations
of tsoft and thard result in a linear decay in the counted
throughput and zero work, respectively. Cloud providers
could choose different decay functions for different types
of tasks. In this study, we choose to define it uniformly
for transactional and batch workloads and measure their
performance using a unified metric, goodput.

The way of data size measurement in Eq. (2) is differ-
ent for transactional jobs and for batch jobs. For trans-
actional workload, ePower treats requests as individual
jobs and estimates the transaction data size dt(j) as the
size of the response sent back to the clients. For batch
jobs, ePower uses the input data size to approximate the
job size db(j). Although the calculations for heteroge-
neous workloads are different, ePower uses a unified
performance metric (i.e., goodput) to count the data
delivered by both workloads as useful work to users
in the datacenter. The definition of goodput encourages
transactional workloads or batch jobs to complete and
meet the SLOs. The decay function ensures that ePower
only counts useful work to users while allocating the
available resource to different workloads.

For long-running batch jobs that cannot be finished
in one control interval, we include the data processed
for the job so far in the effective data throughput and
use tj(k), the elapsed execution time until interval k,
for the observed job finish time. 4pj(k) refers to the
progress of job j’s execution in interval k and thus the
data throughput is calculated as db(j) × 4pj(k). Many
batch jobs provide the interface to query the execution

progress, such as the JobTracker in Hadoop.

3.2 The Optimization Problem

We formulate the resource provisioning for heteroge-
neous workloads as a combinatorial optimization prob-
lem with constraints:

Maximize
K∑
k=1

G(k) (4)

Subject to Pt(k) + Pb(k) ≤ P (k) (5)

0 ≤ tt,i ≤ tt,hard, i = 1, 2, . . . ,m (6)

0 ≤ tb,j ≤ tb,hard, j = 1, 2, . . . , p (7)

TABLE 1
Main notations.

Symbol Meaning

k The control time interval
K Total number of control intervals

G(k) System goodput in the kth interval
Pt(k) Power consumption of transactional workload
Pb(k) Power consumption of batch workload
P (k) Overall power supply in the kth interval
rt(k) Resource allocation for transactional workload
rb(k) Resource allocation for batch workload
s(k) Resource allocation solution in the kth interval
ra(k) Total available resource amount in the kth interval

The notations used for the problem formulation are
listed in Table 1. The objective function Eq. (4) is to
maximize the overall system performance with respect
to the system goodput. There are three constraints.
Eq. (5) requires that the sum of the power consumption
of transactional workloads Pt(k) and batch workloads
Pb(k) is upper bounded by the power supply P (k) in
the kth control interval. Pt(k) and Pb(k) are determined
by the amount of the resource allocated to the two
different workloads, which are controlled via dynamic
resource provisioning. Eq. (6) and Eq. (7) require that
any transactional request or batch job needs to meet its
corresponding hard deadline or its data throughput will
not be counted in G(k), where m and p is the number
of requests and jobs respectively. The resource availabil-
ity in a datacenter is the overall amount of the CPU
resource available for workloads, which is determined
by the dynamic power supply for the datacenter. In
this work, we focus on optimizing CPU resource allo-
cations between Hadoop and RUBiS workloads under
such availability constraint (i.e., Eq. (5)). Note that the
availability of green power supply varies depending on
the natural weather conditions. Thus, the system power
budget P (k) changes accordingly. Thus, the resource
allocation solution should be updated over time. With
limited power supply, decisions need to be made balanc-
ing the power budget of workloads. Since performance
degradation of transactional workloads directly leads to



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 5

 0

 0.4

 0.8

 1.2

 1.6

 2

3 6 9 12

E
ffe

ct
iv

e 
th

ro
ug

hp
ut

 (
G

B
/m

in
)

CPU Resource (GHz)

Transactional workload
Batch workload

Fig. 3. The effective throughput under different resources.

reduced goodput and the processing of batch jobs may
be compensated when more power supply is available,
transactional workloads is to be prioritized. Care should
also be taken to avoid the deadline miss of batch jobs.

4 SIMULATED ANNEALING OPTIMIZATION
To optimize system goodput with the presence of dy-
namic power supply, we develop an efficient simulated
annealing algorithm for the search of the optimal re-
source allocations. Simulated annealing is a robust op-
timization technique, which can deal with highly non-
linear models, chaotic, noisy data, and multiple con-
straints [17]. The original annealing process is to find the
point with the lowest energy. To avoid trapping in the
local optimum, the annealing process explores neighbour
points according to a time-varying parameter T called
the temperature. The larger the temperature, the higher
the chance that neighbour points are visited. When
T = 0, the procedure reduces to a greedy algorithm.
The core of a simulated annealing algorithm is to design
a cooling schedule that dynamically changes T to balance
the exploration and exploitation.

The optimal resource allocation problem fits within the
annealing process. The objective is to find the resource
allocation that maximizes system goodput. Recall that
system goodput is defined as the aggregate effective
data throughput of transactional and batch workloads.
In Figure 3, we plot the effective data throughput of the
RUBiS transactional workload and the Gridmix2 batch
workload when given different amount of resources. We
can see that allocating resources to transactional work-
loads gives a higher margin in the overall goodput. Thus,
the original simulated annealing algorithm is likely to
favor (or prioritize) transactional workloads in resource
allocation irrespective of the execution progress of batch
jobs and the availability of green power supply.

Our objective is to design a cooling schedule that
considers the varying power budget and avoids missing
batch job deadlines. The optimization of system goodput
favors transactional workloads. We define a batch job’s
capacity for resource migration as the inverse of the job’s
temperature. When the temperature is low, the annealing
process seeks an optimal solution without compromising
batch jobs. In the next, we elaborate the design of the
power-aware simulated annealing algorithm.

4.1 Cost Function

The cost function is used to compare the quality of
solutions in searching space. Originally, the annealing
process aims to minimize the cost function. For the
resource allocation problem, the objective is to maximize
the system goodput. Accordingly, the cost function is
defined as the inverse of the system goodput. For a
solution s(k), its cost function is defined as

C(s(k)) =
1

G(k)
. (8)

4.2 Search Space

For the resource allocation problem, the search space
is the set of possible allocations to the heterogeneous
workloads. A solution (or a state) s(k) in the search space
is defined as a vector of resource allocations:

s(k) = (rt(k), rb(k)), (9)

where rt(k) and rb(k) are the resource allocations for
transactional workloads and batch workloads at the kth
interval, respectively. The total available resource is

ra(k) = rt(k) + rb(k). (10)

Based on the available power supply, ePower dynami-
cally adjusts the total amount of resources. It builds a
simple model, similar to the relationship model of CPU
resource and its power consumption proposed in [18],
to translate the power budget into an affordable amount
of resources. The total resource available for hosting
workloads is then capped by the predicted power supply
value with some slackness. When power supply changes,
resources are added to or removed from both workloads
in proportion to their allocations in the last interval.

4.3 Cooling Schedule

The cooling schedule defines the way the tempera-
ture changes in the searching process. The temperature
should be high to allow free explorations when the
power supply is abundant and batch jobs have distant
deadlines. The temperature should be set carefully when
power supply is limited and batch job deadline is ap-
proaching. The setting ought to allow free competition
between different workloads but guaranteeing batch
job’s completion.

4.3.1 Initial Temperature
As others [5], [19], we assume that there is only one
batch job running in the system at a time and reset
the temperature when a new batch job starts. The initial
temperature T0 is set to be 1 to encourage explorations.
It indicates a zero resistance to resource depriving at the
beginning stage of a batch job execution. Since batch jobs
usually have long execution time, there are chances that
the processing delay can be compensated when power
supply increases or transactional workloads decrease.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 6

 0

 0.2

 0.4

 0.6

 0.8

 1

Start Deadline

T
e
m

p
e
ra

tu
re

Job execution time

Tfinal

Tinitial
Frozen state

Cooling function T(k)
Power-aware cooling function T’(k)

Fig. 4. Temperature cooling function.

4.3.2 Cooling Function

The cooling of the temperature serves two purposes.
First, as the temperature cools down, the searching al-
gorithm approximates a greedy algorithm and converges
to the optimal solution. Second, a low temperature in-
creases the batch job’s resistance to processing delay so
as to avoid a deadline miss. The cooling function T (k)
is defined as:

T (k) =

{
(1− tj(k)

tsoft
)2 if tj(k)

tsoft
< σ,

0 if tj(k)
tsoft

≥ σ.
(11)

where tj(k) refers to the elapsed execution time until
interval k and σ measures the proximity to the soft
deadline. The temperature decreases quadratically as
batch job execution approaches its deadline. Once we
are close enough to the deadline (i.e., exceeding the
proximity measure σ), the temperature drops to zero
freezing the exploration and speeding up the batch job.

The simulated annealing method is used at every con-
trol interval most independently. In the cooling schedule,
if a batch job’s execution crosses multiple control inter-
vals, there is a connection among the SA runs, that is,
the cooling temperature starts from that of the previous
control interval.

4.4 Power-aware Cooling Schedule

The temperature of the annealing process needs to be
adjusted when the power availability changes. If the
power supply increases, the temperature should increase
allowing more explorations. If power supply decreases,
the temperature should drop accordingly avoiding the
starvation of the batch job. The change of temperature
restarts the search of optimal solutions, which requires
several iterations to converge. We use the predicted
power supply based on history data to proactively start
the new search.

The next interval power supply P (k + 1) is predicted
based on the last n observations of power supply (i.e.,
P (k), ... P (k−n+1)). ePower adopts the Auto-Regressive
Integrated Moving Average (ARIMA) model [20], [21] to
predict the power series.

P (k+1) = a1P (k)+a2P (k−1)+...+anP (k−n+1), (12)

where a1, a2, . . . , an are coefficients obtained via model
fitting. To incorporate power availability into the cooling
function, we look h steps ahead in the power supply.
Considering the long-term power supply allows early
adjustment of the temperature. Let P (k + h) be the h
step prediction, we define the power impact function as:

I(k) =
P (k + 1)

P (k)
∗ τ P (k + 2)

P (k)
... ∗ τh−1P (k + h)

P (k)
, (13)

where τ is the discount factor that devalues distant
power predictions. The coefficients can be obtained by
least square curve fitting.

Accordingly, the power-aware cooling function T ′(k)
is defined as:

T ′(k) =

{
(1− tj(k)

tsoft
)2 × I(k) if tj(k)

tsoft
< σ,

0 if tj(k)
tsoft

≥ σ.
(14)

Figure 4 plots the temperatures of the two cooling func-
tion discussed. The results are obtained from experimen-
tations in a testbed that is described in Section 6.1. The
solid and dotted plots represent the power-agnostic cool-
ing function T (k) and the power-aware cooling function
T ′(k), respectively. Both cooling functions start with an
initial value of 1, but decays differently thereafter. T (k)
decreases quadratically while T ′(k) is also affected by the
dynamic power supply. Figure 4 also draws the frozen
zone of the power-agnostic cooling function, beyond
which the temperature is effectively zero.

Note that a batch job deadline miss is still possible due
to limited power supply. ePower allows a batch job to
finish after its hard deadline, but its throughput would
not be counted in the system goodput. ARIMA modeling
accuracy can affect ePower prediction accuracy of the
power availability. If ePower overestimates the available
power, it may reduce the goodput of Hadoop workload.
If it underestimates the available power, it may reduce
the goodput of RUBiS workload.

4.5 The Simulated Annealing Algorithm
The optimal solution of the simulated annealing algo-
rithm is to find the resource allocation that minimizes the
cost function (or maximizes goodput). To avoid becom-
ing trapped in local optimum, the algorithm employs a
random search guided by a state transition function.

At each interval, a simulated annealing algorithm
randomly generates a neighbouring s′(k) and tests if
the searching should move to the new state. The accep-
tance of the transition is probabilistically decided by the
Metropolis criterion [17] as it allows SA algorithm to
explore more possible solutions:

pos[s(k), s′(k)] = exp[
−[C(s′(k))− C(s(k))]

T ′(k)
]. (15)

Algorithm 1 shows the simulated annealing algorithm
used in ePower. The algorithm takes current power
supply P (k) and resource allocation s(k) as inputs and
outputs the next interval resource allocation s(k + 1).



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 7

Algorithm 1 Simulated Annealing Algorithm of ePower.
1: Inputs: Power supply P (k) and current state s(k).
2: Update cooling function T ′(k) with I(k);
3: /* Start searching from current state */
4: smin(k) = s(k);
5: repeat
6: /* Randomly generate a neighboring state */
7: s′(k) = generate(smin(k));
8: if r′b(k) > rb,min(k) and C(s′(k)) < C(smin(k)) then
9: Move to next state: smin(k) = s′(k);

10: Continue;
11: end if
12: if r′b(k) ≤ rb,min(k) and pos[smin(k), s

′(k)] ≥
random[0, 1] then

13: Move to next state smin(k) = s′(k);
14: end if
15: until Number-of-iterations ≥ N (a stopping thresh-

old)
16: s(k + 1) = smin(k);
17: Output: Next interval provisioning s(k + 1)

Starting from current state s(k), the algorithm repeat-
edly searches for the state smin(k) minimizing the cost
function. At each iteration, a neighbouring state s′(k)
is generated and tested. Since ePower favors the trans-
actional workload, any move to a state that allocates
more resources to the batch job (i.e., r′b(k) > rb,min(k))
is accepted as long as the cost function reduces (line 8).
For a state that deallocates resources from the batch job,
the decision on the move is made based on the state
transition probability pos[smin(k), s′(k)], which takes the
cost function and batch job deadline into consideration
(line 12). The process restarts at the new state smin and
is repeated for N times. When the search terminates, the
best state smin(k) achieved so far is assigned to s(k+ 1),
the resource provisioning in the next interval.

The search process simulates N moves in the solution
space. At each move, a performance model is used
to predict the system goodput at the new state. We
empirically determined that an iteration of N = 500 steps
provide a good tradeoff between the control accuracy
and overhead. We prove that the proposed simulated
annealing algorithm converges to an optimal solution
given sufficient number of iterations in Appendix A. We
discuss the design of the fuzzy performance model in
Section 5.

5 FUZZY PERFORMANCE MODELING

ePower uses the self-learning fuzzy model for the predic-
tion of system goodput in the simulated annealing search
process. The fuzzy model characterizes the complex
behaviors of the heterogeneous workloads. It is able
to describe complex non-linear relationships between
different workloads and their resource allocations by a
set of linguistic rules in a heterogeneous workload envi-
ronment. Its ability to give good performance prediction
over a wide range of operating conditions is essential for
optimization and control.

5.1 The Fuzzy Model
ePower adopts a fuzzy model to describe complex be-
haviors of the resource allocation and achieved appli-
cation performance. For brevity, we use E(k), r(k), and
w(k) to represent the effective throughput, resource allo-
cation, and workload level of heterogeneous workloads,
respectively. The model is of the input-output Nonlinear
Auto Regressive model with eXogenous inputs (NARX)
as follows.

E(k + 1) = R(r(k), w(k), ξ(k)). (16)

R is the relationship between the input variables and
the output variable. The regression vector ξ(k) contains
a number of lagged outputs and inputs of the previous
control interval. It is represented as

ξ(k) = [(E(k), E(k − 1), · · · , E(k − np)),
(r(k), r(k − 1), · · · , r(k − nr))]T

(17)

where np and nr are the number of lagged values for
outputs and inputs. Let ρ denote the number of elements
in the regression vector ξ(k), that is, ρ = np + nr.
R is the rule-based fuzzy model that is consisted of

Takagi-Sugeno rules [22]. A rule Ri is represented as

Ri : IF ξ1(k) is Ωi,1, ξ2(k) is Ωi,2, · · · , and ξρ(k) is Ωi,ρ

r(k) is Ωi,ρ+1 and w(k) is Ωi,ρ+2

THEN Ei(k + 1) = ζiξ(k) + ηir(k) + ωiw(k) + θi.
(18)

Here, w(k) is the workload volume. Ωi is the antecedent
fuzzy set of the ith rule, which is composed of a series
of subsets: Ωi,1,Ωi,2, · · · ,Ωi,ρ+2. ζi, ηi and ωi are param-
eters, and θi is the offset. Their values are obtained by
offline training.

Each fuzzy rule describes an operating space of the
nonlinear system model. The spaces have some overlaps.
So each output contains several fuzzy rules. The output
E(k+ 1) is computed as the weighted average value by
the rules. That is,

E(k+ 1) =

∑L
i=1 γi(ζiξ(k) + ηir(k) + ωiw(k) + θi)∑L

i=1 γi
. (19)

In Eq. (19), L is the number of rules for the output. γi
is the degree of fulfillment for the ith rule. The value
of γi is the product of the membership degrees of the
antecedent variables in that rule. Membership degrees
are determined by fuzzy membership functions associ-
ated with the antecedent variables. The model output in
Eq. (19) is expressed in the form of

E(k + 1) = ζ∗ξ(k) + η∗r(k) + ω∗w(k) + θ∗. (20)

The aggregated parameters ζ∗, η∗, ω∗ and θ∗ are the
weighted sum of vectors ζi, ηi, ωi and θi respectively.

5.2 Online Self-learning of the Fuzzy Model
Due to high workload dynamics, we design an online
self-learning module to adapt the fuzzy model. The self-



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 8

learning module aims to minimize the prediction error
e(k) of the fuzzy model, e(k) = E(k)− Ê(k). Here, E(k)
is the measured output value of the control system and
Ê(k) is the model’s predicted value for E(k).

The fuzzy model consists of many rules. If e(k) 6= 0,
we apply a recursive least squares (RLS) method to adapt
the parameters of the current fuzzy rule. We express the
fuzzy model output in Eq. (19) as follow:

E(k + 1) = φ(k)X(k) + e(k) (21)

where e(k) is the error between the actual output and
predicted output. φ(k) is a vector composed of the model
parameters. X(k) = [ξ(k)T , r(k)] is a vector containing
the current and previous outputs and inputs of the
control system. The parameter vector φ(k) is estimated
so that the error value in Eq. (22) is minimized.

Error =

k∑
k−1

(e(k)2 + 0.5e(k − 1)2). (22)

We apply both the current error e(k) and the previous
error e(k − 1) to estimate the parameter vector. The
parameters of fuzzy model are updated according to the
RLS method as follows:

φ(k) =φ(k − 1) +Q(k)X(k − 1)[E(k)−X(k − 1)φ(k − 1)]

Q(k) =
1

2
[Q(k − 1)

− Q(k − 1)X(k − 1)XT (k − 1)Q(k − 1)
1
2 +XT (k − 1)Q(k − 1)X(k − 1)

]

(23)

Here Q(k) is the updating matrix. The initial value of
φ(0) is the value obtained in an offline identification.
The initial value of Q(0) is equal to (X(0)TX(0))−1.

6 SYSTEM IMPLEMENTATION

6.1 The Testbed

We built a testbed in a university prototype datacenter,
which consists of five Dell PowerEdge R610 servers and
two Dell PowerEdge R810 servers. Totally, they have
10 Intel 6-core Xeon X5650 CPUs, 8 Intel 6-core E7540
CPUs, and 704 GB memory. The servers are connected
with 10 Gbps Ethernet. VMware vSphere 5.0 is used for
server virtualization. VMware vSphere module controls
the CPU usage limits in MHz allocated to the virtual
machines (VMs). It also provides an API to support the
remote management of VMs. The version of Hadoop
used in the experiment is 1.0.03. The Hadoop cluster is
configured with 11 VMs. Each VM is allocated 1 VCPU
and 1 GB memory. One VM runs the JobTracker and hosts
the NameNode. Each of the remaining 10 VMs hosts a
DataNode and a TaskTracker. As in the work [23], each
Hadoop DataNode is congured with a single map and
reduce slot. The transactional workloads are hosted in
a VM with 4 VCPU and 4 GB memory. All VMs use
Ubuntu Server 10.04 with Linux 2.6.32.

 1000

 2000

 3000

 4000

 5000

 6000

6 12 18 24

N
u
m

b
e
r 

o
f 
U

s
e
rs

Time (hour)

Transational Workload

Fig. 6. A transactional workload.

ePower uses dynamic power supply to infer the
amount of available CPU resource in GHz and optimizes
CPU resource allocation under the resource constraint.
ePower’s SA algorithm determines the CPU usage limit
of individual vCPU and enforces it via the vSphere
management interface. The usage limit for each vCPU is
in the range of 0 to 2.8 GHz. For example, when there is
low power supply, the virtual CPU allocation is reduced
to save the power consumption. How many cores should
be switched off or turned to low power state is controlled
by the hypervisor (VMware) in our testbed.

6.2 Workloads

6.2.1 Transactional Workload

As others [14], [10], [24], we use open-source RUBiS as
the transactional benchmark application in the experi-
ments. RUBiS provides a web auction application that
is modeled in a similar way to ebay.com. It characterizes
the workload into three categories, browsing, bidding,
and selling. The RUBiS workload generator emulates
user requests at different concurrent levels. We use a
real Internet trace from Wikipedia.org [11] to mimic the
daily dynamics of workload volume, which represents
the users’ behavior in visiting the Wikipedia website.
Figure 6 shows the transactional workload that we use
for the experiments. The number of concurrent users
dynamically changes from 1300 to 5000 in 24 hours.
Similar to the work in [14], our experiments set the
soft response time bound to be 1000 ms and the hard
response time bound to be 1500 ms.

6.2.2 Batch Workload

We use a synthetic workload, called “Facebook-Derived
(FaceD)”, which models Facebook’s production work-
load [12]. Appendix B shows the details of FaceD work-
load characteristics. FaceD is a scaled-down version of
the workload studied in [19], [12] due to the scale
limitation of the testbed cluster. As the work in [19], we
do not run the Facebook code itself. Rather, we mimic
the characteristics of the jobs using “loadgen”. Loadgen
is a configurable MapReduce job from the Gridmix2
benchmark included in the Hadoop distribution.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 9

 0

 200

 400

 600

 800

 1000

 1200

6 12 18 24
 0

 20

 40

 60

 80

 100

 120

Ir
ra

d
ia

n
c
e

 (
w

/m
2
)

T
e

m
p

e
ra

tu
re

 (
0
F

)

Time (hour)

Irradiance A
Temperature A

Irradiance B
Temperature B

(a) Irradiance and temperature.

 0

 5

 10

 15

 20

 25

6 12 18 24

W
in

d
 S

p
e

e
d

 (
m

p
h

)

Time (hour)

Wind Speed A
Wind Speed B

(b) Wind speed.

 0

 500

 1000

 1500

 2000

 2500

6 12 18 24

G
re

e
n

 P
o

w
e

r 
(w

a
tt

)

Time (hour)

Green Power A

Green Power B

(c) Green power supply.

Fig. 5. Green power generation by solar and wind in the self-sustainable datacenter in two one-day scenarios.

6.3 Green Power Supply

We use the prediction methods proposed in work [25] to
estimate the amount of the green power supply based on
the natural weather condition in our local city. We utilize
the data to simulate the real green power generation and
supply in the experiments. As many others, we consider
two main renewable sources, solar and wind. We assume
that the sustainable datacenter has 7 solar panels and one
micro-turbine, each with the capability of producing 1.8
KW power. We choose a power prediction interval as
long as the typical weather condition dynamic length
that is in the order of 10 minutes. We also set the control
interval of the resource provisioning to be 10 minutes
in the experiments. In our testbed, the proposed ePower
algorithm takes approximately 30∼40 ms to execute. This
overhead is negligible compared to the 10-minute control
interval.

To emulate the intermittent availability of renewable
energy, we use meteorological data from the Measure-
ment and Instrumentation Data Center (MIDC) of the
National Renewable Energy Laboratory [13]. A variety of
meteorological data, including irradiance, temperature,
and wind speed, is covered in those records from the
MIDC. Moreover, prior studies [5], [25] have shown that
the data from the MIDC is sufficiently accurate.

Based on the prediction methods and the weather
condition records obtained from MIDC, we obtain the
green power supply for the self-sustainable datacenter.
Figure 5(a) and Figure 5(b) show the weather records
of irradiance, temperature, and wind speed of our local
city in two typical days, a summer day A and a winter
day B. Figure 5(c) shows the time-varying green power
supply in the datacenter in two one-day scenarios.

6.4 ePower Components

We implement ePower components on a separate VM,
which issues commands to the virtualized server cluster
via VMware vSphere API 5.0. ePower uses dynamic
power supply to infer the amount of available CPU re-
sources (e.g., GHz) and optimizes vCPU resource alloca-
tion under the constraint. For I/O-bound and memory-
bound workloads, power consumption is mainly con-
nected with the number of memory activities and disk

spinning rate rather than the disk/memory sizes. Al-
though models can be used to derive the upper bound of
such activities and spinning rate given a power supply,
there is a lack of management interface in existing vir-
tualization platforms to control the allocation of these
resources. Based on these practical issues, in the ex-
periments ePower focuses on allocating CPU resources,
which are commonly believed to be the major power
consumer in datacenters [10], [19], [26]. Its SA algorithm
determines the CPU usage limit and the limit is then
applied to the vSphere management interface. The usage
limit for each vCPU is in the range between 0 to 2.8 GHz.

1) Power Monitor: The real-time power consumption
of the virtualized cluster is measured at the resource
pool level. The power monitor gathers the mea-
surement data through VMware ESX 5.0 Intelligent
Power Management Interface sensors. It implements
a threshold-based power capping mechanism [27].

2) Performance Monitor: For transactional applica-
tions, it uses a sensor program provided by RU-
BiS client for performance monitoring in terms of
request response time and the data size of each
request. For batch jobs, it measures each job com-
pletion progress and job size by JobTracker on the
NameNode periodically. Then the monitor calculates
each batch job’s virtual performance.

3) ePower Controller: It applies the SA algorithm for
system resource provisioning optimization, which is
implemented as a standalone daemon on the man-
agement machine. The batch job deadline proximity
threshold σ is set to 0.7. We empirically determined
that the threshold prevents most batch job violations
while giving sufficient flexibility to ePower for pri-
oritizing transaction workloads. For each interval,
the annealing algorithm uses a h = 3 step prediction
of power supply and searches the solution space
for N = 500 iterations. Two self-learning fuzzy
modules run as daemons on the RUBiS server and
the Hadoop’s NameNode, respectively.

4) Resource Allocator: It uses vSphere API to im-
pose CPU usage limits on the VMs. The vSphere
module provides an interface to execute a method
ReconfigVM to modify a VM’s CPU usage limit.
The granularity of CPU allocation is 0.01 GHz.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 10

 0

 1000

 2000

 3000

 4000

A B

S
y
s
te

m
 G

o
o

d
p

u
t 

(G
B

)

Time (day)

Optimal
ePower

RPFs

(a) Combined workloads.

 0

 500

 1000

 1500

 2000

 2500

A B

E
ff

e
c
ti
v
e

 D
a

ta
 T

h
ro

u
g

h
p

u
t 

(G
B

)

Time (day)

Optimal
ePower

RPFs

(b) RUBiS workload.

 0

 500

 1000

 1500

 2000

 2500

A B

E
ff

e
c
ti
v
e

 D
a

ta
 T

h
ro

u
g

h
p

u
t 

(G
B

)

Time (day)

Optimal
ePower

RPFs

(c) Hadoop workload.

Fig. 7. The system goodput achieved by optimal, ePower and RPFs in two one-day scenarios.

 0

 5

 10

 15

 20

 25

 30

A B

Q
oS

 V
io

la
tio

n 
(%

)

Time (day)

Optimal
ePower

RPFs

(a) RUBiS soft violations.

 0

 5

 10

 15

 20

A B

Q
o
S

 V
io

la
ti
o

n
 (

%
)

Time (day)

Optimal
ePower

RPFs

(b) RUBiS hard violations.

 0

 5

 10

 15

 20

 25

 30

A B

Q
oS

 V
io

la
tio

n 
(%

)

Time (day)

Optimal
ePower

RPFs

(c) Hadoop soft violations.

 0

 5

 10

 15

 20

A B

Q
o
S

 V
io

la
ti
o

n
 (

%
)

Time (day)

Optimal
ePower

RPFs

(d) Hadoop hard violations.

Fig. 8. Soft and hard QoS requirement violations of RUBiS and Hadoop workloads in two one-day scenarios.

7 PERFORMANCE EVALUATION

We first demonstrate that ePower performs closely to
an offline determined optimal approach and achieves
better system goodput and less SLO violations than a
representative resource provisioning scheme. We then
show its adaptability under dynamic green power sup-
ply and how it prioritizes transactional workloads and
compensates batch jobs. Finally, we show the accuracy
of the self-learning performance modeling.

To obtain the optimal system goodput, we derived the
optimal resource allocation by applying the proposed SA
algorithm offline using the workload trace in Figure 6
and the power availability trace in Figure 5(c). For
comparison, we also implemented Relative Performance
Functions (RPFs) [6], a representative online approach
for resource provisioning of heterogeneous workloads
in a datacenter. RPFs was proposed for fair trade-offs
between the different workloads in terms of the relative
distance from their performance goals. We modified
RPFs so that it also supports power prediction and
power driven resource provisioning with respect to dy-
namic green power supply. However, RPFs does not
prioritize the power budget of heterogeneous workloads
with respect to various green power supply.

7.1 Optimizing System Goodput

Goodput improvement. Figure 7 compares the system
goodput achieved by the optimal approach, ePower and
RPFs on two days with different power supply condi-
tions. In the experiments, ePower does not count any
throughput towards goodput if a batch job missed its
hard deadline. Figure 7 shows that the overall system

goodput of ePower outperformed RPFs by 28% and
24% on day A and day B, respectively. ePower also
achieved near-optimal performance with goodput that
is 93% and 94% to the offline optimal solution on day A
and day B. Figures 7(b) and 7(c) show the performance
comparison of RUBiS and Hadoop workloads by the
different approaches. For the RUBiS workload, ePower
outperforms RPFs by 34% and 32% while achieving 93%
and 92% of the optimal solution on day A and day B.
For the Hadoop workload, ePower outperforms RPFs
by 20% and 15% while achieving 93% and 96% of the
optimal solution on day A and day B, respectively.

QoS violation improvement. Figure 8 compares the
three approaches in terms of QoS violations. We draw
the percent of hard/soft QoS violations, which is the
ratio of requests/jobs that missed the hard/soft deadline
and the total number of jobs, under different approaches
for RUBiS and Hadoop workloads, respectively. Note
that the power supply was not always sufficient for host-
ing the heterogeneous workloads during the two day pe-
riods, even the optimal approach incurred on average 6%
and 4% violations to RUBiS and Hadoop, respectively.
In day A (summer time), when the power supply varies
more significantly than day B (winter time), both power
supply and RUBiS closely followed the diurnal pattern.
As a result, there was less flexibility to migrate resources
between RUBiS and Hadoop because power was also
inadequate when RUBiS traffic dropped. This explains
why the optimal approach incurred a lower Hadoop
QoS violation rate on day B. According to Figue 8,
ePower performed closely to the optimal approach with
on average 42% and 40% less hard or soft violations for
RUBiS and Hadoop workloads than RPFs did.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 11

 0.5

 1

 1.5

 2
S

y
s
te

m
 G

o
o
d
p
u
t 
p
e
r 

M
in

u
te

 (
G

B
)

RUBiS

Optimal ePower RPFs

 0.5

 1

 1.5

 

Hadoop

 1

 1.5

 2

 2.5

6 12 18 24

Time (hour)

Overall

Fig. 9. Effective data throughput traces on day A.

Trace analysis. To better understand the performance
of different approaches when power supply fluctuates,
Figures 9 and 10 plot the microscopic view of the
achieved goodput in the two day periods. The figures
show the goodput of RUBiS workload, Hadoop work-
load, and the combined workloads due to ePower, opti-
mal and RPFs, respectively. In the first six-hour period
of day A, both RUBiS workload and the power supply
were relative low so that there was little room for op-
timization. All three approaches performed similarly. In
the same period of day B, when more power supply was
available, the optimal approach and ePower allocated
more resources to Hadoop without compromising the
performance of RUBiS. Similar compensation to Hadoop
can also be observed between the 18th and 24th hours
on day B, which leads to overall goodput improvement.

When the RUBiS workload and the power supply
were high on both days (i.e., between the 6th and 18th
hours), a resource allocation scheme needs to make
trade-offs between RUBiS and Hadoop. ePower and
the optimal approach chose to prioritize RUBiS as it
generates a higher margin in system goodput (as shown
in Figure 3). As such, although RPFs achieved better
goodput for Hadoop on both days, ePower and the
optimal approach delivered much better goodput for
RUBiS resulting in optimized system goodput. Note that
ePower occasionally outperformed the optimal solution
at some control intervals. ePower relies on the ARIMA
model to predict the availability of power supply and
may aggressively compensates Hadoop, which leads to
a higher goodput, given that power supply is predicted
to be too low to finish Hadoop jobs in time. Because the
optimal solution works with the actual power trace and
thus delivered better goodput over the 24-hour periods.

Validating performance merits. For more compar-
isons, we also implemented another Cooperative Re-
source Provisioning Solution (CRPs) [7] for heteroge-
neous workload provisioning in a datacenter. The CRPs

 0.5

 1

 1.5

 2

S
y
s
te

m
 G

o
o
d
p
u
t 
p
e
r 

M
in

u
te

 (
G

B
)

RUBiS

Optimal ePower RPFs

 0

 0.5

 1

 1.5

 

Hadoop

 1

 1.5

 2

 2.5

6 12 18 24

Time (hour)

Overall

Fig. 10. Effective data throughput traces on day B.

approach takes advantage of a group of heterogeneous
workloads to save the peak resource consumption. Fig-
ure 11 compares the combined system goodput, RUBiS
goodput, and Hadoop goodput achieved by ePower and
CRPs respectively. It shows that ePower outperforms
CRPs by 28% in terms of the overall system goodput.
This is due to the fact that CRPs does not support
resource migration between these two heterogeneous
workloads while ePower does that by exploiting the
dynamic characteristics of the RUBiS workload.

7.2 Adapting to Dynamic Power Supply
In this subsection, we show that ePower adaptively caps
the total power consumption based on the availability of
green power supply and dynamically allocates resources
to heterogeneous workloads.

7.2.1 Adaptive Power Capping
ePower does not assume that the green power supply is
always sufficient to power the whole datacenter. Instead,
it controls the total power consumption by capping the
available resources that can be used by hosted work-
loads. Similar to [18], ePower builds a model translating
the power budget into an upper limit of resources.
Figure 12(a) shows the system power consumption in the
presence of dynamic power supply on day A and day
B. We can observe that ePower was able to control the
power consumption by adaptively controlling the overall
available resources to heterogeneous workloads. This is
due to its multi-interval power supply prediction based
on the ARMIA model and its threshold-based power
capping mechanism that ensures that the real power
consumption is below the actual power supply. Never-
theless, there could exist overlaps between the power
supply and consumption, depending on the threshold
value and the real workload dynamics. In this particular
experiment, note that we did not observe the violation.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 12

 0

 1000

 2000

 3000

 4000

Combined RUBiS Hadoop

S
ys

te
m

 G
oo

dp
ut

 (
G

B
)

Workloads

ePower
CRPs

Fig. 11. Comparison between ePower and CRPs.

7.2.2 Dynamic Resource Provisioning
While ePower controls the total power consumption, it
also dynamically partitions the resources between trans-
actional and batch workloads so as to optimize system
goodput. Figures 12(b) and 12(c) show the dynamic
resource allocations between RUBiS and Hadoop on day
A and B, respectively. The Y-axis CPU allocation is that
the sum total value of all the frequencies allocated to
the two workloads. Note that the two different resource
allocations for Hadoop and RUBiS workloads are not
overlapped in Figures 12(b) and 12(c). The slash area
represents the resource allocated to Hadoop workload
and the grid area represents the resource allocated to
RUBiS workload. Between the 6th and 18th hours on both
days, when the RUBiS workload and the power supply
increased, ePower allocated more resources to RUBiS to
satisfy its demand and boosted overall system gooput.
When RUBiS workload decreased but the power supply
was still relative high, e.g., the first six-hour period and
the last six-hour period on day B, ePower compensated
Hadoop by allocating more resources. When power sup-
ply was scarce and RUBiS workload was relatively high,
e.g., the last six-hour period on day A, ePower allowed
the competition between RUBiS and Hadoop that led to
the optimal system goodput.

7.3 QoS-aware Resource Migration

By design, ePower prioritizes transactional workloads
as such workloads contribute more to system goodput
than batch jobs contribute (as shown in Figure 3). How-
ever, batch jobs should be compensated when power
supply is sufficient or their deadlines are approaching.
The temperature in ePower’s SA algorithm determines
the resource migration between transactional and batch
workloads. Figure 13 plots the resource allocation of a
Hadoop job (the job running at the 18th hour in Fig-
ure 12(c)), against the cooling temperature on day A. We
can see that ePower initially assigned a minimal amount
of resource to the Hadoop job when the temperature
was high. As Hadoop job’s deadline was approaching,
the temperature dropped quadratically and resources
were migrated to the Hadoop job accordingly. When the
power supply increased, the temperature climbed for a

 0

 2

 4

 6

 8

 10

Start Deadline
 0

 0.2

 0.4

 0.6

 0.8

 1

C
P

U
 r

e
s
o
u
rc

e
 (

G
H

z
)

T
e
m

p
e
ra

tu
re

Time

Frozen point

Temperature climbing

Batch job resource
Temperature

Fig. 13. Job temperature and resource.

short period resulting in more resources being allocated
to the transactional workload. After that the approaching
Hadoop deadline became the dominant factor in setting
the cooling temperature so that resources were migrated
to Hadoop to avoid QoS violations. In ePower, the re-
source migration between two heterogeneous workloads
is done by changing their vCPU capacities, rather than
migrating processes across their VMs.

7.4 Overhead and Scalability

We conduct overhead and scalability analysis of the
ePower approach. The overhead mainly comes from two
sources: (1) The time required to perform the optimiza-
tion algorithm in each control interval; (2) The time
required to activate control adjustment (i.e., dynamic
resource allocations) according to the algorithm. Our
results show that the overhead of the algorithm is be-
tween 30 ms to 40 ms, which is relative small compared
with the 10-minute control interval. Then we measure
the activation overhead in each control interval. ePower
took on average of 2.4 seconds to activate resource allo-
cation adjustments for the VMs in the resource pool. The
overhead is also negligible compared to the 10-minute
control interval. The overhead of the optimization algo-
rithm is quite stable (i.e., 30-40 ms) when the testbed
grows, since the algorithm itself is independent of the
testbed size. The overhead of the resource allocation is
increased slightly by 4% when the overall resource pool
size is increased by 10 times. Thus, ePower approach
is scalable and applicable to larger scale systems. Ap-
pendix C shows the accuracy of the self-learning fuzzy
performance modeling used in ePower.

8 RELATED WORK

Power management in datacenters is an important and
challenging research area. It is a research trend that
power efficiency and application performance control
are jointly tackled in virtualized datacenter servers [9],
[10], [18], [28]. Those previous studies consider the
power-stable situation when the traditional electrical
grid is used. They did not consider the situation when
the power supply is not stable.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 13

 500

 1000

 1500

6 12 18 24

P
o
w

e
r 

(w
a
tt
)

Time (hour)

Power supply B
ePower consumption B

 500

 1000

 1500
P

o
w

e
r 

(w
a
tt
)

Power supply A
ePower consumption A

(a) ePower dynamic power control.

 0

 5

 10

 15

 20

6 12 18 24

C
P

U
 A

llo
c
a

ti
o

n
 (

G
H

z
)

Time (hour)

Hadoop
RUBiS

(b) ePower resource allocations on day A.

 0

 5

 10

 15

 20

6 12 18 24

C
P

U
 A

llo
c
a

ti
o

n
 (

G
H

z
)

Time (hour)

Hadoop
RUBiS

(c) ePower resource allocations on day B.

Fig. 12. Self-adaptiveness of ePower control in power consumption and resource allocation in two one-day scenarios.

Recently, a number of studies aim to achieve sustain-
able operation by renewable energy supply in green
datacenters [29], [27], [30]. Stewart et al., proposed re-
newable energy management approaches to maximize
the use of off-grid renewable energy in datacenters [29].
Wang et al., presented a theoretical framework for cap-
turing important characteristics of different energy stor-
age technologies, the trade-offs of placing them at dif-
ferent levels of the power hierarchy, and quantifying the
resulting cost-benefit trade-offs as a function of workload
properties [30]. Those studies focused on the renewable
energy supply side of datacenters.

Some other studies focus on the power demand of
green datacenters by workload management and re-
source provisioning of applications [3], [5], [19], [31].
Zhang et al., proposed GreenWare, a novel middleware
that dynamically dispatch requests to maximize the per-
centage of renewable energy used to power a network
of distributed data centers, subject to the desired cost
budget of the Internet service operator [25]. The work
only considers Internet transactional workloads.

Goiri et al., proposed GreenHadoop [19], an interesting
MapReduce framework for a datacenter powered by a
solar array and the backup electrical grid. They inves-
tigated how to manage a datacenter’s computational
workload to match the green energy supply. Green-
Hadoop predicts the amount of solar energy that would
be available in the near future and schedules the MapRe-
duce jobs to maximize the green energy consumption
within the jobs’ completion time bounds. It uses the
electrical grid as backup to avoid time bound violations.
The work only considers MapReduce workloads.

There are studies on the resource management of
heterogeneous workloads (i.e., batch and transactional
workloads) [6], [7], [21]. Carrera et al., [6] proposed
an important technique, Relative Performance Functions
(RPFs), which allows integrated management of batch
and transactional workloads. RPF for one application is
a measure of the relative distance of the application’s
achieved performance from its goal. RPFs is used to
make fair trade-offs between the different workloads.
Zhan et al., [7] proposed a Cooperative Resource Pro-
visioning solution (CRPs) to decrease the peak resource
consumption of workloads in a datacenter. It leverages

the difference of heterogeneous workloads in terms of
resource consumption characteristics and performance
goals. Those works adopt QoS awareness but pay little
attention to whether the power supply is stable.

Our recent work [32] focuses on the scenario of mul-
tiple self-sustainable datacenters and relies on the dy-
namic workload management. Instead, ePower focuses
on elastic resource provisioning in a single datacenter.

9 CONCLUSIONS AND FUTURE WORK

Resource provisioning of heterogeneous workloads is an
important but challenging problem in datacenters. In
this paper we focus on the problem in self-sustainable
datacenters. We have proposed and developed an elastic
power-aware resource provisioning approach (ePower)
to improve the overall system goodput and control the
system power consumption with respect to the dynamic
green power supply. As demonstrated by modeling,
optimization and experimental results based on the
testbed implementation, its main contributions are near-
to-optimal performance, resilience to dynamic power
availability and improved system dependability. The
main technical novelty of ePower lies in the developed
power-aware simulated annealing based resource provi-
sioning and self-learning fuzzy performance modeling
techniques. ePower can significantly enhance the system
performance of a self-sustainable datacenter by the elas-
tic power-aware resource provisioning. Our future work
will integrate weather prediction models with ePower
and further explore sustainable cloud computing.

ACKNOWLEDGEMENT

This research was supported in part by U.S. NSF
CAREER award CNS-0844983, research grants CNS-
1422119, CNS-1320122 and CNS-1217979, and NSF of
China research grant 61328203. The authors are grateful
to the anonymous reviewers for valuable suggestions.

REFERENCES
[1] Various Green Datacenters. http://www.ecobusinesslinks.com/.
[2] I. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini. Parasol

and GreenSwitch: Managing Datacenters Powered by Renewable
Energy*. In Proc. ACM ASPLOS, 2013.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428695, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , APRIL 2015 14

[3] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang,
M. Marwah and C. Hyser. Renewable and cooling aware work-
load management for sustainable data centers. In Proc. ACM
SIGMETRICS, 2012.

[4] R. Singh, D. Irwin, P. Shenoy, and K. Ramakrishnan. Yank:
Enabling green data centers to pull the plug. In Proc. USENIX
NSDI, 2013.

[5] B. Aksanli, J. Venkatesh, L. Zhang, and T. Rosing. Utilizing green
energy prediction to schedule mixed batch and service jobs in
data centers. In Proc. USENIX HotPower, 2011.

[6] D. Carrera, M. Steinder, I. Jordi Torres, and E. Ayguade. Au-
tonomic placement of mixed batch and transactional workloads.
IEEE Trans. on Parallel and Distributed Systems, 23(1), 2012.

[7] J. Zhan, L. Wang, X. Li, S. W., W. C., Z. W., and Z. X. Cost-aware
cooperative resource provisioning for heterogeneous workloads
in data centers. IEEE Trans. on Computers, 62(11), 2013.

[8] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Burstiness in
multi-tier applications: Symptoms, causes, and new models. In
Proc. ACM/IFIP/USENIX Middleware, 2008.

[9] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Autonomic
mixaware provisioning for non-stationary data center workloads.
In Proc. IEEE ICAC, 2010.

[10] P. Lama and X. Zhou. Ninepin: Non-invasive and energy efficient
performance isolation in virtualized servers. In Proc. IEEE/IFIP
DSN, 2012.

[11] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload
analysis for decentralized hosting. Computer Networks, 53(11),
2009.

[12] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica. Job scheduling for multi-user mapreduce clusters.
TR UCB/EECS-2009-55, Berkeley, 2009.

[13] Measurement and instrumentation data center. http://www.nrel.
gov/midc/.

[14] Y. Guo, P. Lama, and X. Zhou. Automated and agile server
parameter tuning with learning and control. In Proc. IEEE IPDPS,
2012.

[15] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Bridging the Tenant-Provider Gap in Cloud Services. In Proc.
ACM SoCC, 2012.

[16] J. Moses, R. Iyer, R. Illikkal, S. Srinivasan, and K. Aisopos.
Shared resource monitoring and throughput optimization in
cloud-computing datacenters. In Proc. IEEE IPDPS, 2011.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598) 1983.

[18] Q. Zhang, F. Mohamed, S. Zhang, Q. Zhu, B. Raouf, and L. Joseph.
Dynamic energy-aware capacity provisioning for cloud comput-
ing environments. In Proc. IEEE ICAC, 2012.

[19] I. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bian-
chini. Greenhadoop: Leveraging green energy in data-processing
frameworks. In Proc. ACM EuroSys, 2012.

[20] G. Box, G. Jenkins, and G. Reinsel,. Time Series Analysis,
Forecasting, and Control. Prentice-Hall, third edition, 1994.

[21] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz. Energy efficiency
for large-scale mapreduce workloads with significant interactive
analysis In Proc. ACM EuroSys, 2012.

[22] Y. Chen, B. Yang, A. Abraham, and L. Peng. Automatic design of
hierarchical Takagi-Sugeno type fuzzy systems using evolution-
ary algorithms. IEEE Trans. on Fuzzy Systems, 15(3) 2007.

[23] A. Verma, L. Cherkasova, and R. H. Campbell. Resource provi-
sioning framework for MapReduce jobs with performance goals.
In Proc. ACM/IFIP/USENIX Middleware, 2011.

[24] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and
Z. Wang. Probabilistic performance modeling of virtualized
resource allocation. In Proc. IEEE ICAC, 2010.

[25] Y. Zhang, Y. Wang, and X. Wang. Greenware: Greening cloudscale
data centers to maximize the use of renewable energy. In Proc.
ACM/IFIP/USENIX Middleware, 2011.

[26] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal
power allocation in server farms. In Proc. ACM SIGMETRICS,
2009.

[27] D. Gmach, J. Rolia, C. Bash, Y. Chen, T. Christian, A. Shah,
R. Sharma, and Z. Wang. Capacity planning and power man-
agement to exploit sustainable energy. In Proc. IEEE CNSM, 2010.

[28] Y. Wang, X. Wang, M. Chen, and X. Zhu. Partic: Power-aware
response time control for virtualized web servers. IEEE Trans. on
Parallel and Distributed Systems, 21(4) 2010.

[29] C. Stewart and S. K. Some joules are more precious than others:
Managing renewable energy in the datacenter*. In Proc. USENIX
HotPower, 2009.

[30] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H.
K. Fathy. Energy storage in datacenters: What, where, and how
much?. In Proc. ACM SIGMETRICS, 2012.

[31] C. Li, R. Zhou, and T. Li. Enabling distributed generation powered
sustainable high-performance data center. In Proc. IEEE HPCA,
2013.

[32] D. Cheng, C. Jiang, and X. Zhou. Heterogeneity-aware workload
placement and migration in distributed sustainable datacenters.
In Proc. IEEE IPDPS, 2014.

Dazhao Cheng received his B.S. degree in
Electronic Engineering from Hefei University of
Technology, China, in 2006. He received his
M.S. degree in Electronic Engineering from Uni-
versity of Science and Technology of China in
2009. Currently, he is working towards the Ph.D.
degree in Computer Science at the University
of Colorado, Colorado Springs. His research
interests include sustainable cloud computing
and autonomic resource management. He is a
student member of the IEEE.

Jia Rao received his B.S. and M.S. degrees
in Computer Science from Wuhan University in
2004 and 2006, respectively, and Ph.D. degree
from Wayne State University in 2011. He is
currently an Assistant Professor in the Depart-
ment of Computer Science at the University of
Colorado, Colorado Springs. His research inter-
ests include the areas of distributed systems,
resource auto-configuration, machine learning
and CPU scheduling on emerging multi-core
systems. He is a member of the IEEE.

Changjun Jiang received the Ph.D. de-
gree from the Institute of Automation, Chinese
Academy of Sciences, Beijing, China, in 1995.
Currently he is a Professor with the Department
of Computer Science, Tongji University, Shang-
hai. He is also the Director of Professional Com-
mittee of Petri Net of China Computer Federation
and the Vice Director of Professional Committee
of Management Systems of China Automation
Federation. His current areas of research are
concurrent theory, Petri net, and formal verifica-

tion of software, concurrency processing and intelligent transportation
systems. He is a member of the IEEE.

Xiaobo Zhou obtained the BS, MS, and PhD
degrees in Computer Science from Nanjing Uni-
versity, in 1994, 1997, and 2000, respectively.
Currently he is a Professor and the Chair of the
Department of Computer Science, University of
Colorado, Colorado Springs. His research lies
broadly in computer network systems, specifi-
cally, Cloud computing and datacenters, BigData
parallel and distributed processing, autonomic
and sustainable computing, scalable Internet
services and architectures. He was a recipient of

the NSF CAREER Award in 2009. He is a senior member of the IEEE.


