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Abstract—Blockchain technology is developing rapidly and has
been applied in various aspects, among which there are broad
prospects in Internet of Things (IoT). However, IoT mobile
devices are restricted in communication and computation due
to mobility and portability, so that they can’t afford the high
computing cost for blockchain mining process. To solve it, the
free resources displayed on non-mining-devices and edge cloud
are selected to construct collaborative mining network(CMN) to
execute mining tasks for mobile blockchain. Miners can offload
their mining tasks to non-mining-devices within a CMN or the
edge cloud when there are insufficient resources. Considering
competition for resource of non-mining-devices, resource allo-
cation problem in a CMN is formulated as a double auction
game, among which Bayes-Nash Equilibrium (BNE) is analyzed
to figure out the optimal auction price. When offloading to edge
cloud, Stackelberg game is adopted to model interactions between
edge cloud operator and different CMNs to obtain the optimal
resource price and devices’ resource demands. The mechanism
realizes improving the mining utility in mining networks while
ensuring the maximum profit of edge cloud operator. Finally,
profits of mining networks are compared with an existing
mode which only considers offloading to edge cloud. Under the
proposed mechanism, mining networks obtain 6.86% more profits
on average.

Index Terms—Edge computing, IoT, blockchain, resource man-
agement, task offloading.

I. INTRODUCTION

THE Internet of Things (IoT) connects a large scale of
heterogeneous devices for information exchanging and

economic benefits, in which Mobile Edge Computing (MEC)
is a promising solution that allows mobile devices to run
demanding applications by providing computing resources.
However, building trust between multiple parties in MEC is a
challenge because these parties often have conflicting interests
[1], [2]. To address this problem, blockchain which is a tamper
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proof transaction database shared by all nodes participating in
a network based on a consensus protocol is introduced [3].
Features like security, transparency and decentralization allow
it to be a distributed peer-to-peer network where non-trusting
members can interact with each other in a verifiable manner
without a trusted intermediary [4], [5]. To ensure data security
in mobile commerce between mobile devices, blockchain has
been integrated as an efficient security solution into establish-
ing trust between mobile devices in a decentralized network
[6].

The development of blockchain in IoT mobile applica-
tions is hindered by a major challenge brought by heavy
computational process [1]. Blockchain’s security relies on a
proof-of-work procedure called mining, which is a difficult
mathematical problem making blockchain almost impossible
to be tampered with [7]. When a transaction is generated and
broadcasted, it will be collected and validated by some nodes
concurrently in the network, then mining nodes constantly try
to find a rare random number which generates a specific hash
value [8]. Mobile devices are restricted in key areas related to
communication and computation such as memory, battery and
processing due to design choices that guarantee their mobility
[9], [10], so that they fall short to afford the high computing
resources to find the value in mining process [11]. To support
mining tasks execution in mobile environments for mobile
devices, we suggest offloading mining tasks to edge cloud and
neighbor non-mining-devices [9], [12].

Recently, several edge computing resource allocation
schemes and blockchain mining task offloading models have
been proposed to provide solutions. Focusing on the optimiza-
tion of resource allocation and pricing between mobile users
and edge cloud, Z. Xiong et al. proposed a Stackelberg game
based economic approach for mobile devices to offload mining
tasks to edge nodes in [13]. J. Wang et al. designed a Deep
Reinforcement Learning based Resource Allocation (DRLRA)
mechanism, which can adapt to different MEC environments
and allocate computing resources efficiently [14]. These re-
searches help a lot to optimize mining offloading strategies, but
they only consider optimization of a single device offloading
tasks to the edge cloud. Differently, we consider the optimiza-
tion of mining offloading to both neighbor devices and edge
cloud operator (ECO).

Since the probability of an individual miner to find a new
block in due time is excruciatingly small, we suggest mobile
devices in proximity interconnecting with each other to form a
Collaborative Mining Network (CMN), which is like a mining
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pool [15]. Mining-devices gather their computational resources
and share their hashing power in the CMN in order to smooth
out their mining rewards effectively. Then they split the reward
in proportion to their contribution to solving a block [16].
However, due to high mobility [17], some mining-devices
may not stay in a CMN for sufficient time to contribute
resources that meet the expected average mining resources.
They should obtain less reward than in proportion to their
contribution. Therefore, some devices with high mobility may
not be profitable to mine, so that they can share their resources
with neighbor mining-devices within the CMN instead of
participating in mining, which we call sharing-devices. In
view of competitions between mining-devices for sharing-
devices’ resources, we adopt a double auction method to
manage mining offloading. In the auction, the BNE [18] of
each mining-device’s net profit is first calculated based on
their values of the resources to figure out the optimal bid.
Meanwhile, sharing-devices analyze BNE of their expected
profits based on mining cost to obtain the optimal asking price.
Then, the auction strategy is determined based on mining-
devices’ bids and sharing-devices’ asking prices.

However, task offloading within CMN is not enough, the
growing amount of mining tasks will push current CMN
resource to the limit, then the mining processes will be
performed with the support of ECO. In the process of mining
offloading to ECO, we consider CMN as a whole, and mining-
devices apply for resources from ECO through proxy in CMN.
Therefore, we consider the total resources that a CMN requests
from ECO and total mining profits in it. Since the non-
cooperative CMNs and ECO can be assumed as intelligent
decision-makers [12], [19], a two-stage Stackelberg game is
adopted to model the interactions between ECO and CMNs.
In the first stage, considering competitions with other CMNs
and prices of ECO’s resources, CMNs determine the optimal
resource demands from ECO. In the second stage, ECO
who aims at maximizing its profit decides upon the optimal
resource price based on CMNs’ resource demands.

Compared to traditional edge computing, innovations of our
work lie in that mobile devices can offload their blockchain
mining tasks to both neighbor devices and edge cloud. The
main goal of our study is to calculate the optimal resource
allocation to maximize the profits of ECO and CMN. The
main contributions of this paper are summarized as follows:
• We proposed a novel resource management schema for

mobile blockchain. In our schema, mobile devices in
proximity aggregate computing resources to form a CMN
to reduce the uncertainty of successful mining. The
mining tasks of devices with limited resources can be
offloaded to capable ones. Moreover, we analyze the
optimal execution time of the task offloading algorithm
every time a device joins or exits through simulation for
adapting to the high dynamics of the IoT.

• Our mechanism supports two offloading modes. Miners
can offload their mining tasks to non-mining-devices
within the CMN or to edge cloud, which takes advantage
of idle resources within the CMN and reduces the load
on edge cloud.

• To manage resource allocation between mining-devices

and sharing-devices in a CMN, we formulate the problem
as a double auction game. The expected utility of two
sides are formulated regarding resource value and cost,
and then we calculate the BNE of the utility to obtain the
optimal auction price.

• Mining offloading to ECO is developed as a price-based
optimization problem to maximize the profits of ECO and
CMN, in which both uniform pricing and differentiated
pricing are considered. Stackelberg game is applied to
model interactions between ECO and CMNs, in which we
formulate the profits of both. Based on the profit function,
we analyze the NE to obtain the optimal price of ECO
and the most profit of CMN.

The rest of this paper is organized as follows. Section
II reviews the related work. Section III presents the system
model and objective formulation. A double auction algorithm
for resource allocation in the CMN is presented in section
IV, after which we analyze the NE of Stackelberg game
between CMNs and ECO in section V. The experimental
results and corresponding discussions are presented in section
VI, followed by conclusions in section VII.

II. RELATED WORK

A. Blockchain mining mechanisms

Recently, several blockchain mining mechanisms have been
proposed. S. Kim et al. [16] presented a blockchain mining
game model based on multi-leader multi-follower Stackelberg
game. In the model, users are grouped into multiple distributed
mining pools to gather resources while Stackelberg game is
used to solve collaboration and competition issues in each
mining pool and between multiple pools. L. Luu et al. [20]
introduced a distributed computational power splitting game
(CPS game) model to realize profit maximization. M. Salim-
itari et al. [21] presented a prospect theoretic approach for
profit maximization in bitcoin pool mining. Since it is a big
challenge for a new miner to decide which pool to join to
get the most profits, they used prospect theory to calculate the
miner’s expected utility deriving from each pool.

These blockchain mining mechanisms have solved the opti-
mal mining scheme of the blockchain network effectively, but
it is still difficult to apply the schemes to the mobile blockchain
network because mobile devices have limited communication
and computation capability. However, with MEC, computation
tasks can be offloaded to the edge network. We draw on their
ideas for collaborative mining in the mining pool and propose
a collaborative mining network CMN. Moreover, in the CMN,
the devices can upload mining tasks to adjacent idle devices
or edge cloud.

B. Mobile blockchain application

Blockchain has also been applied in many scenarios in IoT.
To ensure the safety of mobile commerce, K. Suankaewmanee
et al. [22] introduced MobiChain which can authenticate
and record transactions between mobile applications on the
blockchain to prevent tampering or repudiation. Gai et al. [23]
proposed a permissioned blockchain edge model for smart
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grid networks to help with the privacy protection and energy
security of smart grids. Furthermore, the authors presented
a consortium blockchain-oriented approach to address the
problem of trading information leakage in blockchain in [24].
In order to solve the insecurity issue of data outsourcing to
designated data centers, P. K. Sharma et al. [25] put forward
a novel blockchain-based distributed cloud architecture which
included three layers. The device layer was used to monitor
public infrastructure environments and request services. In the
cloud layer, blockchain was adopted to supervise the process
of data access and resource allocation. In the fog layer, they
brought computing resources to the edge of the IoT network
based on SDN and blockchain.

These studies have integrated blockchain into various areas
of the IoT effectively. However, in mobile edge networks, the
widespread application of blockchain is challenging due to
limited computing and storage resources of mobile devices.
To support the application of blockchain in mobile networks,
we propose to offload blockchain mining tasks to the edge
network.

C. Edge computing resource allocation

Now that compute-intensive mining tasks can be offloaded
to the edge cloud, we further consider resource allocation
strategies in the edge and CMN. The edge computing re-
source allocation problem has also interested some researchers
recently. Several approaches have been proposed to provide
solutions: resource auction [26], [27], game theory [28]–[30],
Deep Reinforcement Learning (DRL) [31], [32], etc.

Considering resource auction, Y. Jiao et al. [26] investigated
an auction mechanism in the mobile blockchain to maximize
social welfare. The social welfare was described as the profit of
the whole blockchain network. Each time miners decided upon
their bids, the system selected winners until social welfare
decreased. N. C. Luong et al. [27] proposed a deep-learning-
based auction method for edge computing resource allocation.
They constructed a multi-layer neural network architecture to
provide solution of the optimal auction. Yang et al. [31] de-
signed a real-time adaptive schema for computational resource
allocation to support task offloading of mobile users based on
DRL. Tan et al. [32] invented a DRL-based multi-time-scale
framework, which jointly optimizes communication, caching,
and computational design issues to achieve the optimal cost
effectiveness of vehicle networks. Gai et al. [33] designed the
Energy-Aware Heterogeneous Cloud Management model and
proposed an adaptive solution to address the task offloading
problem for reducing the computation costs.

Game theory has also already been extensively applied to
optimize the problem of edge computing resource allocation.
Z. Xiong et al. put forward a two-stage Stackelberg game
model in [28] to acquire the optimal price-based resource
management between mobile devices and edge cloud service
provider in mobile blockchain. In [30], two data offloading
mechanisms among multiple mobile users based on game
theory were proposed. The multi-item auction (MIA) based
data offloading approach was designed from the perspective
of mobile operator who wanted to maximize his revenue. And

for the mobile subscriber aiming at minimizing the payment,
they proposed a congestion game (COG) based data offloading
approach. X. Chen et al. [29] adopted a game theoretic
approach to address the challenges of choosing between local
computing and cloud computing.

These recent researches have achieved excellent results and
introduced innovations well worth adopting. On the basis of
existing resource allocation optimization strategies, we take
both the mining benefits of CMN and edge cloud as the
optimization goal, to adapt to our scenario. Besides, different
from these existing researches on mining strategies in edge
network, we support mining offloading not only to edge
clouds, but also to neighbour devices to take advantage of idle
device resources within the CMN and reduce communication
delays.

III. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, we consider a scenario with an
ECO and several CMNs M = {1, . . . ,M} in a mobile
blockchain. CMN i is consisted of multiple mobile devices
N〉 = {1, . . . , Ni} which are arranged according to the time
of joining CMN, and the available resources of mobile devices
in it are set to Ci = {c1, . . . , cNi}. Note that the collection
is dynamic, Ni will change when a device joins or exits the
CMN. As mentioned before, there are both mining-devices and
sharing-devices in the CMN. We use Mi = {1, . . . ,Mi} to
describe mining-devices in CMN i. Mining-devices can apply
for resources from ECO through the edge broker or from
sharing-devices within the CMN to offload their mining tasks.
In order to reduce transmission costs, the mining task is prefer-
entially offloaded to sharing-devices within the CMN through
an auction mechanism which will be detailed in section 3.2.
Considering different CMNs, let R = {r1, . . . , rM} denote
the expected average resources for mining of different CMNs.
Only if resources in a CMN can’t reach the expected value,
the edge broker in it requests resources for mining-devices
from ECO. Therefore, a CMN’s resource demand from ECO
is the expected mining resources minus the resources it owns,
defined as yi = max(Miri −

∑
j∈N〉

cj , 0). Obviously, there
is a limit that ri ∈ [ri, r],∀i ∈ M, where ri is the average
resources of mobile devices in CMN i and r is the maximum
resources can be provided by ECO.

The generation of a new block consists of two stages:
mining and consensus. In the mining process, miners compete
to mine to create a new block. Let ω = {ω1, . . . , ωM} denote
the miner number vector of CMNs such that the possibility of
a CMN successfully mining can be expressed as its hashing
power

hi(ri, r−i) =
Miri∑

j∈MMjrj
, hi > 0, (1)

in which
∑
j∈M hj = 1. After a valid block is mined, it is

instantaneously propagated across the network for verification
to complete the consensus process. If the propagation and
verification time is too long, the mined block will become an
orphaned block which is abandoned by blockchain. Here, we
set miner i’s block propagation delay as τpi = ti

γ·c , where ti is
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Fig. 1. Mobile blockchain with two mining offloading modes: offloading to neighbor devices and edge cloud.

the number of transactions in the block, γ is the network scale-
related parameter, and c is the average effective channel capac-
ity of each link [34]. As the verification and PoW computing
time for a transaction requires a fixed amount of computation,
the time is assumed linear to the number of transactions in the
block [35], expressed as τvi = l · ti, where l is a parameter
determined by network scale and the average verification
speed of nodes. Considering that the generation of new blocks
follows a Poisson process , miner i’s orphaning probability can
be approximated as Po(ti) = 1 − e−λ(

ti
γc+lti) with a process

parameter λ referring to the complexity of mining a block.
Obviously, the probability of CMN i successfully mining to
generate a block is

Pi(ri,Mi, ti) = hi×(1−Po(ti)) =
Miri∑

j∈MMjrj
e−λ(

ti
γc+lti).

(2)
CMN i successfully mining will gain a corresponding mining
reward. The reward consists of a fixed reward R and a
commission reward defined as rti, in which ti represents the
number of its mining transactions and r is the reward for unit
transaction (reward rate). Additionally, it is charged for using
resources of ECO. Therefore, CMN i’s utility is formulated as

UMi = (R+ rti)
Miri∑

j∈MMjrj
e−λ(

ti
γc+lti)

− (Miri −
∑
j∈N〉

cj)pi −
∑
j∈N〉

Bijcj ,
(3)

where pi is ECO’s unit resource price to CMN i, and the cost
for device j in CMN i using unit resource is defined as Bij .

After successful mining, mining-devices split the reward in
proportion to their contributed resources to solve the block.
Moreover, we impose certain penalties on those who leave the
CMN before providing enough mining resources that meet
the expected average mining resources ri, and reward the

excess. So the expected profit of mining-device k in CMN
i is formulated as

Umk,i =
c
′

k

c
′
k +

∑
j 6=k cj

E − (ri − c
′

k)ρi − c
′

kB
i
k, (4)

where E = (R+rti)Miri∑
j∈MMjrj

e−λ(
ti
γc+lti) − (Miri −

∑
j∈N〉

cj)pi,

c
′

k is the number of resources actually used for mining before
the node exits and ρi is the penalty coefficient in CMN i set
according to the market. We can see that some mobile devices
with tiny resources and high mobility may not be profitable.
So when a new device joins the CMN, it first estimates the
mining profit regarding its resources. If it is not profitable, it
can choose to share its resources to high-capacity devices.

B. Mining offloading model

In this subsection, a double auction model is adopted for
mining offloading within the CMN, and mining offloading to
ECO is modeled as a Stackelberg game.

1) Mining offloading within CMN: Considering the compe-
tition among mining-devices, we adopt a double auction [36],
[37] method for resource sharing between mobile devices in
CMN.

In the double auction, each mining-device (buyer) i decides
a bid for unit resource indicated as bi. Each sharing-device
(seller) j has a maximum amount of resources available
defined as Rj , and the asking price for unit resource is given
as sj . Since the mining profit function of a single mobile
device is convex in the resource quantity, gaining more mining
resources will definitely bring more profit. So we assume that
the resource demand of the mining-device is always more than
any sharing-device’s resource supply. Then, the bids, asking
prices and resources available information are all sent to the
edge broker who manages auction process.
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TABLE I
SYMBOL SUMMARY

Symbol Definition
M The set of CMNs.
N〉 The mobile devices in a CMN.
cij The resources of mobile device j in CMN i.
ri The expected average mining resources of CMN i.
ti The transaction number of CMN i.
λ The complexity of mining a block.
γ The network scale-related parameter.
c The average effective channel capacity of each link.
l The reciprocal of the average verification speed of nodes.
R The fixed reward for mining.
r The reward for unit transaction (reward rate).

UMi CMN i’s net profit from mining.
Umk,i Mobile device k’s net profit from mining in CMN i.
UECO The net profit of ECO.
pi The price of ECO’s unit resource to CMN i.
B The cost of using unit resource on ECO.
Bij The cost of using unit resource on device j.
ub Mining-device i’s utility from unit auctioned resource.
us Sharing-device j’s profit from selling unit resource.
bi Mining-device i’s bid for unit resource.
sj Sharing-device j’s asking price for unit resource.

Assuming that there are n buyers bidding for m sellers’
resources. To ensure all the sellers profitable, we find the
intersection point before which sellers’ asking prices are lower
than buyers’ bids. So bids of the n buyers are arranged in
descending order as b1 ≥ b2 ≥ · · · ≥ bn, and asking
prices of the m sellers are arranged in ascending order as
s1 ≤ s2 ≤ · · · ≤ sm. If a value k satisfying the condition
bk ≥ sk and bk+1 < sk+1 can be found, there are successful
matches in the auction. To match the supply and resource
demand [38], the sellers before k are arranged in ascending
order of resource supplies as R1′ ≤ R2′ ≤ · · · ≤ Rk′ .
Then the auction price between buyer k and seller k

′
is

determined to (sk′ +bk)/2. After making the deal, the two are
removed from the market and the other participants repeat the
above process. When there is no k satisfying the condition,
the edge broker informs the remaining sellers and buyers to
reconsider their prices. If there are only sellers remaining after
the auction, all buyers and the remaining sellers open a new
round of auctions.

Obviously, the profit of buyer k is ub = vk − (sk′ + bk)/2,
and the profit of seller k

′
is us = (sk′ + bk)/2−Bk′ , where

vk is the value that unit auctioned resource can create to buyer
k and Bk′ is seller k

′
’s cost of unit computing resource.

Since the buyers do not bid at the same time, they can not
know the price strategy of others. And the match result will
not be known until auction ends. So it is a static game of
incomplete information and BNE exists. In accordance with
Harsanyi’s theory [36], BNE is generally analyzed to obtain
the expected utility maximization with incomplete information
in traditional auctions as

E(u) = (vi − bi)Pwin(bi), (5)

where Pwin(bi) is buyer i’s probability of winning the auction,
vi is the expected profit from unit auctioned resource and bi
is his bid for unit resource.

As the buyers aim at maximizing their expected profits
by giving the optimal bids, the optimization problem can be
described as

P1 : max
bi

ub(bi(vi)) = (vi − bi(vi)) · P{bi ≥ sj(Bj)}.
(6)

The sellers focus on figuring out the optimal asking price
to maximize their expect profits, so the optimization problem
can be formulated as

P2 : max
sj

us(sj(Bj)) = (sj(Bj)−Bj) · P{bi(vi) ≥ sj}.
(7)

2) Mining offloading to ECO: ECO is profitable by charg-
ing the CMNs for using its resources. So its net profit is given
as revenue from CMNs getting rid of calculation cost

UECO =
∑
i∈M

(pi −B)(Miri −
∑
j∈N〉

cj), (8)

where B is the cost for performing unit work on edge cloud.
CMN tends to achieve its maximum utility while ECO

focuses on getting the most profits. Hence, to adjust the
demand of computation resources and the price for using
them, this process is modeled as Stackelberg Game. ECO
who is the leader first declares the prices for unit resource
to CMNs (followers). Based on other CMNs’ strategies and
the prices announced from ECO, the followers decide their
expected mining resources. Then, according to the state of
resource allocation, ECO provides the optimal price to obtain
the maximum profit.

The objective of CMN i is to maximize its own utility by
choosing the optimal mining resource size for given price pi
set by the ECO. Mathematically, this problem can be described
as

P3 : max
ri

UMi (ri, r−i, pi)=(R+ rti)
Miri∑

j∈MMjrj
e−λ(

ti
γc+lti)

− (Miri −
∑
j∈N〉

cj)pi −
∑
j∈N〉

Bijcj .

(9)
The goal of ECO is to maximize its revenue obtained from

renting computation resources to mobile devices. Mathemati-
cally, the optimization problem at ECO’s side can be expressed
as

P4 : max
p≥0

UECO(p, r) =
∑
i∈M

(pi −B)(Miri −
∑
j∈N〉

cj),

(10)
note that pi can be uniform or different meaning that pricing
can adapt to different demands of CMNs for resources.

IV. OFFLOADING WITHIN CMN BASED ON DOUBLE
AUCTION

In this section, on the basis of the double auction model
presented in section 3.2.1, we calculate the BNE to acquire
the optimal auction strategy in CMN.

In a round of mining, mobile devices first carry out the
auction process to offload mining tasks to neighbour devices.
After that, the remaining mining tasks will be offloaded to
the edge cloud. Since the network is dynamic, we consider
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to balance the algorithm overhead and wait time of newly
joining devices and set the process to non-preemptive. When
the number of newly joining devices for mining in the CMN
reaches Nf , these newly added devices execute the proposed
algorithm and perform a new round of mining.

The sellers do not bid at the same time, when a new sharing-
device joins the CMN, it announces the asking price to mining-
devices. When a sharing-device exits, the profit it obtains is the
number of resources it provides by auction price. To simplify
the process, we premise that all mining-devices (buyers) and
sharing-devices (sellers) give prices with a linear strategy.
Before buyer i participates in the auction, it first considers
the resource value as part of its bid, presented as

bi = ηb + ξb × vi, (11)

where vi = ci∑
j∈N〉

cj
E + ρ obtained from (4) is miner i’s

possible profit from unit auctioned resource, and ηb and ξb
are the fixed parameters. And seller j considers the cost as
part of its asking price, presented as

sj = ηs + ξs ×Bj , (12)

and ηs and ξs are the fixed parameters.
According to the history of transaction records, it is sup-

posed that the permitted maximum auction price in the market
is Pmax and the permitted minimum auction price is Pmin.
So unit cost and profit from unit resource follow uniform
distribution

Bi ∼ U [Pmin, Pmax], vi ∼ U [Pmin, Pmax]. (13)

Thus, sj and bi follow

sj ∼ U [ηs + ξsPmin, ηs + ξsPmax],

bi ∼ U [ηb + ξbPmin, ηb + ξbPmax].
(14)

Considering the property of uniform distribution and the
definition of auction price, (6) and (7) can be further trans-
formed into

P1
′

: max
bi
{vi −

1

2
[bi + E(sj(Bj) | bi ≥ sj(Bj))]}

· P{bi ≥ sj(Bj)}.
(15)

P2
′

: max
sj
{1

2
[sj + E(bi(vi) | bi(vi) ≥ sj)]−Bj}

· P{bi(vi) ≥ sj}.
(16)

Further, P{bi ≥ sj(Bj)} and E(sj(Bj) | bi ≥ sj(Bj)) can
be calculated as (17) and (18).

P{bi≥sj(Bj)}=P{Bj≤
bi − ηs
ξs

}=bi − (ηs + ξsPmin)

(Pmax − Pmin)ξs
,

(17)

E{sj(Bj)|bi≥sj(Bj)}=

∫ bi
ηs+ξsPmin

1
(Pmax−Pmin)ξsxdx

P{bi≥sj(Bj)}

=
1

2
(bi + ηs + ξsPmin).

(18)

Finally, by substituting the above two formulas into (15) we
can achieve the final form of P1

′

P1
′′

: max
bi
{vi −

1

2
[bi +

1

2
(bi + ηs + ξsPmin)]}

· bi − (ηs + ξsPmin)

(Pmax − Pmin)ξs
.

(19)

Similarly, P2
′

can be further simplified to

P2
′′

: max
sj
{1

2
[sj +

1

2
(sj + ηb + ξbPmax))]−Bj}

· (ηb + ξbPmin)− sj
(Pmax − Pmin)ξb

.

(20)

We derive the first order and second order derivatives of
the above two equations, finding that the two problems are
concave. Let the first derivatives be 0, and we can obtain

bi =
2vi + (ηs + ξsPmin)

3
, (21)

sj =
2Bj + (ηb + ξbPmax)

3
. (22)

By substituting (11), (14) into (21), (22), the equilibrium
point can be obtained.

ηs =
Pmin

12
+
Pmax

4
, ξs =

2

3
, (23)

ηb =
Pmax

12
+
Pmin

4
, ξb =

2

3
. (24)

Finally, we obtain the optimal bid and asking price as listed
below. We can see that the buyer gives its optimal bid linear
to the value and the optimal asking price of seller is linear to
the cost.

b∗i =
2vi
3

+
Pmin

4
+
Pmax

12
, (25)

s∗j =
2Bj

3
+
Pmax

4
+
Pmin

12
. (26)

To sum up the auction model in section 3.2.1 and the
optimization problems above, a resource auction algorithm in
CMN is presented in Algorithm 1.

V. OFFLOADING BETWEEN CMN AND ECO BASED ON
STACKELBERG GAME

In this section, on the basis of the Stackelberg game model
presented in section 3.2.2, we analyze the performance of
the game model and calculate the NE to obtain the optimal
resource allocation and pricing between ECO and CMNs.

A. Offloading Algorithm

Given the utility function defined in (9) and (10), we now
analyze the performance of the Stackelberg game. The strate-
gic game can be formulated as Γ = 〈M, (ri)i∈M, (ui)i∈M〉,
in which the players are M CMNs. (ri)i∈M denotes the set
of strategies (number of mining resources) of CMNs, and
(ui)i∈M denotes the utility functions. We refer to the game as
a multi-user noncooperative offloading game. Considering that
if CMNs can compute a strategy profile in which no CMN can
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Algorithm 1: Resource auction in CMN Algorithm.
Input : Value profile of buyers v = (v1, v2, . . . , vn).

Cost and resource supply tuple of sellers
S = {(B1, R1), . . . , (Bm, Rm)}.
Permitted maximum price Pmax.
Permitted minimum price Pmin.

1 Bidding profile b = ∅.
2 Asking price profile s = ∅.
3 Auction result tuple r = ∅.
4 set i = 1, j = 1.
5 while i ≤ n do
6 bi = 2vi

3 + Pmin
4 + Pmax

12 .
7 b = b ∪ bi, i = i+ 1.
8 end
9 while j ≤ m do

10 sj =
2Bj
3 + Pmax

4 + Pmin
12 .

11 s = s ∪ si, j = j + 1.
12 end
13 Sort b in descending order and get b = (b(1), . . . , b(n)).
14 Sort s in ascending order and get s = (s(1), . . . , s(m)).
15 while b 6= ∅ and s 6= ∅ do
16 if value k satisfies the condition

b(k) ≥ s(k), b(k+1) < s(k+1) then
17 Sort (R(1), R(2), . . . , R(k)) in ascending order,

and get (R(1′ ), R(2′ ), . . . , R(k′ )).

18 pk =
(s

(k
′
)
+b(k))

2 .
19 b = b \ b(k), s = s \ s(k′ ).
20 r = r ∪ (b(k), s(k′ ), pk).
21 else
22 break
23 end
24 end

Output: Auction result tuple
r = {(b(1), s(1′ ), p1), . . . , (b(k), s(k′ ), pk), . . . }.

further increase its utility overhead by changing its strategy,
there is a pure NE in the game.

Definition 1. For the strategic game Γ, given the price vector
set by ECO p∗ = (p∗1, p

∗
2, . . . , p

∗
M ), no CMN can increase

its utility overhead by unilaterally changing its strategy under
strategy profile r∗ = (r∗1 , r

∗
2 , . . . , r

∗
M ), r∗ is the unique NE,

i.e.,

UMi (r∗i , r
∗
−i, p

∗
i ) > UMi (ri, r∗−i, p

∗
i ),∀ri ∈ R. (27)

Based on the NE of the mining resources in game Γ, ECO
(leader) can optimize its pricing strategy to maximize its profit
defined in (10).

Definition 2. Given the NE of the mining resources in game Γ,
a strategy profile p∗ = (p∗1, p

∗
2, . . . , p

∗
M ) is the optimal price,

if at p∗, ECO can’t further increase its profit by unilaterally
changing its strategy, i.e.,

UECOi (p∗, r∗) > UECOi (p, r∗), ∀p > 0. (28)

To sum up, the Stackelberg game based offloading algorithm
between CMN and ECO is detailed in Algorithm 2.

Algorithm 2: Mining offloading between CMN and ECO
Algorithm.

1 CMN set M = {1, 2, . . . ,M}.
2 r∗ = ∅, p∗ = ∅.
3 for each i ∈M do
4 r∗i =0, p∗i =0.
5 end
6 for each i ∈M do
7 CMN i calculates r∗i according to (42).
8 if ri ∈ [ri, r] then
9 r∗ = r∗ ∪ r∗i .

10 end
11 end
12 for each i ∈M do
13 ECO calculates p∗i based on r∗.
14 p∗ = p∗ ∪ p∗i .
15 end

Output: Optimal resource price p∗ and optimal mining
resource strategy r∗.

B. Analysis of the NE for the offloading game between CMN
and ECO

We consider two modes of ECO’s pricing: uniform pricing
and differentiated pricing. Next, the existence of the optimal
mining resources and the optimal prices in these two modes
will be proved.

1) Uniform pricing: Under uniform pricing, ECO charges
the same price p for different users, so we can replace pi with
p in (9) and (10).

Theorem 1. The NE in game Γ = 〈M, (ri)i∈M, (ui)i∈M〉
exists.

Proof. The strategy space is defined to ri ∈ [ri, r],where ri
is the average resources of mining-devices in CMN i and r is
the maximum resources can be provided by ECO. So it is a
nonempty, compact and convex subset of the Euclidean space
RM , UMi is obviously continuous in ri. We take the first order
and second order derivatives of (7) with respect to ri, which
are given as follows.

∂UMi
∂ri

= Mi(R+ rti)e
−λ( tiγc+lti)

∑
i6=jMjrj

(
∑
j∈MMjrj)2

−Mip,

(29)
∂2UMi
∂2ri

= −2M2
i (R+rti)e

−λ( tiγc+lti)
∑
i6=jMjrj

(
∑
j∈MMjrj)3

. (30)

Since
∑
i6=jMjrj

(
∑
j∈MMjrj)2

> 0 and −2M2
i

∑
i6=jMjrj

(
∑
j∈MMjrj)3

< 0,
the second order derivative of Umi with respect to ri is always
negative so that Umi is concave in ri. Now we have proved
the existence of the NE.

Theorem 2. The NE of game Γ is unique.
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Proof. Let r∗i denote the value of resource that satisfies the
condition ∂UMi

∂ri
= 0. From (29) we can get the best response

function of CMN i as

r∗i = Fi(x) =



ri,
ζr −

∑
i6=jMjrj

Mi
< ri,

r,
ζr −

∑
i6=jMjrj

Mi
> r,

ζr −
∑
i6=jMjrj

Mi
, otherwise,

(31)

where ζr =

√
(R+rti)

∑
i6=jMjrj

pe
λ(
ti
γc

+lti)
.

The function Fi(x) is positive, monotonic and scalable,
which is a standard function. Therefore, there is a unique NE
for game Γ.

Theorem 3. The unique NE for game Γ is given as

r∗i =
M − 1

Mi

∑
j∈M ζuj

− ζui
Mi

(
M − 1∑
j∈M ζuj

)2

,∀i ∈M, (32)

where ζuj = pe
λ(
tj
γc

+ltj)

(R+rtj)
.

Proof. Let ∂UMi
∂ri

in equation (29) be 0, we can get∑
i6=jMjrj

(
∑
j∈MMjrj)2

=
MipEi

Mi(R+ rti)
, (33)

where Ei = eλ(
ti
γc+lti).

To make it tractable, we get

∑
j∈M

Mjrj =

√
Mi(R+ rti)

∑
i6=jMjrj

MipEi
. (34)

The sum of two sides of (33) at different i is calculated as

(M − 1)

∑
j∈MMjrj

(
∑
j∈MMjrj)2

=
∑
i∈M

MipEi
Mi(R+ rti)

. (35)

By simplifying (35),

∑
j∈M

Mjrj =
M − 1∑

i∈M
MipEi

Mi(R+rti)

. (36)

Finally, by substituting equation (36) into equation (34), the
NE is obtained as equation (32).

Theorem 4. ECO has a unique optimal price to maximize
profit when ri ∈ [ri, r].

Proof. By substituting (32) into (10), we simplify the ECO
profit maximization problem to

UECO(p, r)=
∑
i∈M

p−B
p

N(M − 1)∑
j∈M

Ne
λ(
tj
γc

+ltj)

(R+rtj)

−(p−B)C, (37)

where C is
∑
i∈M

∑
j∈N〉

cj . Then we calculate the first and
second derivatives of profit UECO as follows.

∂UECO

∂p
=
∑
i∈M

B

p2
N(M − 1)∑

j∈M
Ne

λ(
tj
γc

+ltj)

(R+rtj)

− C, (38)

∂2UECO

∂2p
=
∑
i∈M
−2B

p3
N(M − 1)∑

j∈M
Ne

λ(
tj
γc

+ltj)

(R+rtj)

. (39)

Since the second derivative of UECO with respect to p is
always negative, UECO is concave in p. Now we have proved
that, with the unique optimal price, the maximum profit of
ECO can be obtained.

2) Differentiated pricing: Under the differentiated pricing
scheme, ECO can charge different prices pi for different
CMNs based on their demands on resources,

Theorem 5. There is a unique NE in Γ =
〈M, (ri)i∈M, (ui)i∈M〉.

Proof. Similar to uniform pricing, the NE exits since the
second derivative (41) is always negative and Umi is concave
in ri.

∂UMi
∂ri

= Mi(R+ rti)e
−λ( tiγc+lti)

∑
i6=jMjrj

(
∑
j∈MMjrj)2

−Mipi,

(40)
∂2UMi
∂2ri

= −2M2
i (R+rti)e

−λ( tiγc+lti)
∑
i6=jMjrj

(
∑
j∈MMjrj)3

. (41)

In addition, let r∗i denote the value of resource that satisfies
the condition ∂UMi

∂ri
= 0. From (40) we can get that the best

response function is standard and the NE is unique similar to
uniform pricing, which is given as

r∗i =
M − 1

Mi

∑
j∈M ζdj

− ζdi
Mi

(
M − 1∑
j∈M ζdj

)2

,∀i ∈M, (42)

where ζdj =
pjNe

λ(
tj
γc

+ltj)

(R+rtj)
.

Theorem 6. ECO has a unique optimal price vector p to
maximize profit when ri ∈ [ri, r].

Proof. We first take the first and second partial derivative of
UECO(p) with respect to pi and the second mixed partial
derivative with respect to pi, pj as

∂UECO

∂pi
=

∑
j∈MB(M − 1)

Ej
(R+rtj)

(
∑
j∈M

pjEj
(R+rtj)

)2
− C, (43)

∂2UECO

∂2pi
=
−2 Ei

(R+rti)

∑
j∈MB(M−1)

Ej
(R+rtj)

(
∑
j∈M

pjEj
(R+rtj)

)3
, (44)

∂2UECO

∂pi∂pj
=
−2

Ej
(R+rtj)

∑
j∈MB(M−1)

Ej
(R+rtj)

(
∑
j∈M

pjEj
(R+rtj)

)3
, (45)
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where Ej = eλ(
tj
γc+ltj).

Then the Hessian matrix of UECO(p) is described as

H = ∆ ·


E1

(R+rt1)
E2

(R+rt2)
. . . EM

(R+rtM )
E1

(R+rt1)
E2

(R+rt2)
. . . EM

(R+rtM )

. . . . . . . . . . . .
E1

(R+rt1)
E2

(R+rt2)
. . . EM

(R+rtM )
E1

(R+rt1)
E2

(R+rt2)
. . . EM

(R+rtM )

, (46)

where ∆ = −2B(M − 1)
∑
j∈M

Ej
(R+rtj)

/(
∑
j∈M

pjEj
(R+rtj)

)3.
Since the second partial derivative (44) and the second

mixed partial derivative (45) are always negative, the Hessian
matrix of UECO(p) is obviously semi-negative. Therefore,
UECO(p) is concave on each pi and there is a unique optimal
price vector to get the maximum profit of ECO.

We now finish proving the unique existence of the opti-
mal mining resource allocation and the optimal prices under
uniform pricing and differentiated pricing.

VI. SIMULATION RESULTS AND EVALUATIONS

A. Simulation settings

Experimentally, the proposed system is implemented by
using Hyperledger Fabric to write smart contracts on the
blockchain. The Fabric network is divided into four organiza-
tions, and each organization enables sixteen peers to simulate
a CMN. Each peer is installed on a x64 virtual machine with
32 vCPUs. In order to ensure the accuracy of the experimental
results without being affected by device random exit or entry,
we initiate 10 fabric networks and average the experimental
results.

In the experiment, we first create 500 blocks based on the
loadtest library of Node.js and use the peers to implement
the mining process. Then we study the resource allocation
and profits of ECO and CMN as the primary performance
metrics for the proposed mechanism. Profits of ECO and
miners are compared with the pricing-based edge computing
resource management method (PECRM) in [28]. PECRM
is a pricing-based method for edge resources which only
considers offloading to edge cloud. Simulation results verify
the superiority of the proposed mechanism. Further, we study
the impact of various configurable parameters such as delay
effect, transaction number, reward rate, etc. on the performance
of CMN and ECO to give some suggestions on their mining
strategies. The related parameters in the simulation are listed
in Table II, which are derived from simulation on the fabric.
They are applied in simulation examples unless otherwise
stated.

B. Simulation results and evaluations

As described in Section IV, when the number of newly
joining devices for mining reaches Nf , a new round of mining
is carried out. Under the experimental parameters in Table II,
we can get an average mining time of 10 minutes. In a mining
interval T , we assume that 10 new devices join the CMN every
5/3 minutes. Fig. 2. shows profits of CMN under different Nf
when there are 60, 80, and 100 miners in a CMN initially. We

TABLE II
SIMULATION PARAMETERS

Parameter Description Values
ωi Miner desity of CMN. 0.6

1
γc

+ l Delay effect. 0.01

λ Mining complexity parameter. 0.1
R Fixed reward. 105

r Reward rate. 100
ti Transaction number of CMN i. N (300, 5)
p Price of ECO’s resource. 80
ci Available resources of device i. U(0, 5)
B Cost of unit resource to ECO. 30
Bi Cost of unit resource to CMN i. N (30, 5)
r ECO’s maximum resource number. 200

can get that, in the interval T , if a new round of mining starts
when Nf is slightly less than half of the original number of
miners, the maximum profit can be obtained.
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Fig. 2. Profit of CMN in a mining interval at different algorithm execution
frequencies.

Next, more numerical simulations are performed to verify
the superiority of the proposed mechanism. We initiate three
CMNs, each with 100 devices.

We first analyze the mining success possibility of three
CMNs under different parameters in Fig. 3. We can see that
with the increase of delay effect, the mining success possibility
decreases because the probability of generating an orphan
block increases. When the delay effect is more than 0.06,
the mining success possibility of CMN with miner density
(number of mining-devices/total devices) 0.5 is less than 0.05.
Therefore, in the case of high delay effect, it is not necessarily
profitable for CMN with few mining-devices to mine. Besides,
CMN with miner density 0.7 has a higher success rate under
differentiated pricing than uniform pricing, while CMN with
miner density 0.5 and 0.9 are opposite. This is because under
differentiated pricing, ECO fixes the price flexibly in view
of mining-device number. According to Fig. 5, ECO charges
more for unit resource usage of CMN with more mining-
devices, so that there are less resource requests in CMN with
high mining-device number under differentiated pricing than
uniform pricing, resulting in lower mining success rate under
differentiated pricing than uniform pricing.
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Fig. 3. Mining success possibilities under different delay effects, mining-
device numbers and pricing schemes.

Fig. 4 and Fig. 5 depict the auction price of resources within
the CMN with respect to transcation number, reward rate, and
delay effect.

According to Fig. 4, the average auction price of resources
is between 40 and 50. This range is reasonable due to higher
than computational cost and lower than ECO’s price. In terms
of mining-device number, the auction price within the CMN
decreases as the mining-device number increases, as mining-
devices give bids based on their expected profits, which
decrease as the number of mining-devices increases. The figure
also compares the auction price under differentiated pricing
and uniform pricing. Since the optimal price under differ-
entiated pricing is lower than uniform pricing, the expected
profit under differentiated pricing is higher, generating higher
auction price. Meanwhile, the possibility of successful mining
drops when delay effect increases, so the auction price steps
down.

In Fig. 5, the increase in transaction number brings an
increase in the auction price. Similar to Fig. 4, the auction
price is determined by the expected profit and the computing
cost. When the number of transactions is not overloaded,
the commission remuneration is proportional to transaction
number. And since the cost is fixed and the expected profit
rises as transaction number rises, the expected profit increases
too. Similarly, the auction price is higher under high reward
rate.

In Fig. 6, CMNs with price limits of 70, 80 and 90
are compared to obtain the pricing strategy of ECO. CMN
with a price limit under uniform pricing always sets the
optimal price to the highest price within the limit. But the
optimal price under differentiated pricing is slightly lower
than uniform pricing and approaches the limit gradually as the
mining-device number increases. Due to differentiated pricing,
the optimal price can be dynamically adjusted according to
different resource demands. It is expected that competition
with more miners forces up the optimal price.

The analysis of resource demand is presented in Fig. 7 and
Fig. 8. In Fig. 7, we find that under uniform pricing, as the
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Fig. 4. Average auction price under different mining-device numbers, delay
effects and pricing schemes.
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Fig. 5. Average auction price under different transaction numbers, reward
rates and pricing schemes.

mining-device number increases, the optimal average resource
demand increases. However, under differentiated pricing, as
the increase in mining-device number leads to a rise in
resource prices, the average resource demand decreases after
reaching a certain level due to high price. Besides, when the
mining-device number is fixed, the lower the delay effect,
the higher the average resource demand. This is because
miners have higher enthusiasm to mine when the possibility
of success is high. Fig. 8 shows that a higher reward rate
motivates miners to request more resources. It also shows
that with the increase of transaction number, average resource
demand increases. That’s because more transactions introduces
higher profitability, thus motivating miners to compete for
more resources to improve the possibility of successful mining.

The profit of miners under our mechanism is compared with
PECRM in [28] in Fig. 9. We consider the impact of delay
effect and reward rate under differentiated pricing respectively.
On average, the total profit of miners in a CMN under our
mechanism is 6.86% higher than PECRM. This is because
we support mining offloading to neighbor mobile devices to
take advantage of the idle computing resources in the network,
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Fig. 6. Optimal price of ECO under different mining-device numbers, price
limits and pricing schemes.
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Fig. 7. Optimal average resource allocation under different mining-device
numbers, delay effects and pricing schemes.

thus reducing the amount of resources requested from ECO.
The top picture shows that the higher the reward rate, the
higher the CMN’s profit. It’s expected that high returns inspire
miners requesting more resources to mine, which in turn
improves the profit of CMN. And as more miners contribute
more hashing power in the CMN, the possibility of successful
mining increases, so the CMN with more mining-devices get
higher profits. The picture below shows that under different
delay effect, the profit under our mechanism is still higher than
PECRM. Moreover, with the increase of the delay effect, the
expected profit of CMN decreases. The reason is that longer
propagation delays reduce the probability of block generation,
thus reducing the expected profit.

We also observe the changing trend of ECO’s profit with
respect to delay effect and reward rate under our mechanism
and PECRM. According to Fig. 10, the profit of ECO increases
as reward rate increases due to that higher reward rate inspires
more resource demand. On the contrary, the profit of ECO

100 120 140 160 180 200 220 240 260 280 300

Number of transcations

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

O
p

ti
m

a
l 
a

v
e

ra
g

e
 r

e
s
o

u
rc

e
 a

llo
c
a

ti
o

n
 i
n

 C
M

N

Reward rate of 80 under differentiated pricing

Reward rate of 80 under uniform pricing

Reward rate of 100 under differentiated pricing

Reward rate of 100 under uniform pricing

Reward rate of 120 under differentiated pricing

Reward rate of 120 under uniform pricing

Fig. 8. Optimal average resource allocation under different mining-device
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Fig. 9. Comparison of CMNs’ profit under PECRM and our mechanism.

decreases when the delay effect increases. Recall from Fig.
6, average resource demand in CMN decreases as the delay
effect increases, which in turn brings down the profit of ECO.
We also compare the profit of ECO under our mechanism
with PECRM. By reason of more resource sharing within the
CMN to reduce mining costs, the resource demand from ECO
under our mechanism is less, thus the profit of ECO under our
mechanism is lower than PECRM. This is reasonable because
we are more focused on determining the optimal resource
allocation and obtaining the maximum profit of CMN based
on ECO’s optimal price.

In summary, we come to the conclusion that miners request
more resources and benefit more with lower delay effect,
larger transaction volumes, and higher reward rate. And there
are more resource requests under the differentiated pricing
scheme, so that ECO profits more. What’s more, miners obtain
more profits on average when offloading to both CMNs and
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ECO than only to ECO.
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Fig. 10. Comparison of ECOs’ profit under PECRM and our mechanism.

VII. CONCLUSION

Aiming at applying blockchain in IoT mobile devices, this
paper proposes that the free resource displayed on non-mining-
devices and edge cloud can be selected to construct collab-
orative mining network (CMN) to execute mining tasks for
mobile blockchain. In the CMN, mobile users decide whether
to offload mining tasks to sharing-devices in the CMN or edge
cloud. Further, offloading within the CMN is managed by a
double auction mechanism, in which the BNE is calculated
to figure out the optimal auction price. Then, we model
the interactions between ECO and CMNs as a Stackelberg
game and analyze the NE of the game to obtain the optimal
price and resource allocation method. In the simulation, we
study the impact of various configurable parameters on the
performance of CMNs and ECO. Moreover, the performance
of our mechanism is compared with the PECRM method,
simulation results show that under our proposed mechanism,
CMNs obtain 6.86% more profits on average.
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