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Abstract—Energy consumption is one of the major challenges
of modern datacenters and supercomputers. By applying Green
Programming techniques, developers have to iteratively imple-
ment and test new versions of their software, thus evaluating
the impact of each code version on their energy, power and per-
formance objectives. This approach is manual and can be long,
challenging and complicated, especially for High Performance
Computing applications. In this paper, we formally introduces
the definition of the Code Version Variability (CVV) leverage
and present a first approach to automate Green Programming
(i.e., CVV usage) by studying the specific use-case of an HPC
stencil-based numerical code, used in production. This approach
is based on the automatic generation of code versions thanks to a
Domain Specific Language (DSL), and on the automatic choice of
code version through a set of actors. Moreover, a real case study
is introduced and evaluated though a set of benchmarks to show
that several trade-offs are introduced by CVV1. Finally, different
kinds of production scenarios are evaluated through simulation
to illustrate possible benefits of applying various actors on top
of the CVV automation.

Keywords-Code version variability leverage, green program-
ming automation, energy efficiency, power capping, high perfor-
mance computing, DSL, shallow-water equations;

I. INTRODUCTION

Energy consumption is a major growing concern in our

day to day life. It is also widely recognized as one of the

major problems of our generation. In a world where energy

usage is a global concern, computing facilities consumption

are not negligible. Datacenters are today responsible of 2%

of global carbon emissions and use 80 million megawatt-

hours of energy annually. For this reason it is necessary to

apply every available techniques on computing facilities to

reduce or regulate their energy and power consumption. Those

techniques are often called leverages, while smart entities

which makes use of them are called actors. To face this

growing concern many leverages have been developed at

multiple level of computing facilities: hardware, middleware,

and application.

Taking into account energy issues while programming a

software is often called Green Programming (GP). However,

on one hand, by using such a technique, a developer has to

write and handle multiple versions of a code, and s/he has to

1Experiments were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER and
several Universities as well as other organisations (https://www.grid5000.fr).
Some experiments were done on the GENCI CURIE platform.

compare them manually to finally choose the one which suits

the best his/her constraints and objectives (e.g., energy, power,

performance etc.). On the other hand, the growth of super-

computing capabilities increases both the energy consumption

and the complexity of supercomputer usage, which makes

difficult and very technical the development of applications

on such machines. In such a complex context, it is even

harder for a green programmer to deal with the generation,

the comparison and the choice of the version of code while

taking into account modular constraints. Moreover, some of

those constraints concern HPC systems administrators more

than application developpers such as, for example, constraints

related to contracts with electrical providers.
In this paper we propose four main contributions :

• a formal definition of a leverage, an actor and the CVV

leverage;

• a complete process toward automated Green Program-

ming for production numerical simulations;

• a real case-study of our automated process to show its

applicability;

• and a set of evaluations of our case-study to show both the

interest of the CVV leverage for better trade-offs between

metrics, and the pourcentage gain by using our Green

Programming automation.

The remaining of this paper is structured as follows. Sec-

tion II introduces the formalism of a leverage, applies it to

the CVV leverage and presents our automated process toward

Green Programming (i.e., CVV usage). A complete case-study

is then detailed in Section III. Sections IV and V respectively

details the experimental setup and our set of evaluations

onto our case-study. Finally, related works are discussed in

Section VI, and Section VII concludes this work.

II. TOWARD CVV LEVERAGE AUTOMATION

In this section are presented the first two contributions of

the paper which are, first, the introduction of the Code Version

Variability Leverage, and second, a complete process for its

usage automation onto production runs of a HPC application.

A. Code Version Variability Leverage
Before the presentation of the CVV leverage we clarify our

contribution by giving a formal definition of a leverage.

Definition 1. A leverage L is a triplet L = (S, sc, fs), where
S = {s0, s1, . . . , sn} is the set of available valid states of L,
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sc is the current state of L, and fs is a function to update the
current state to a new state s′c ∈ S.

In other words, a leverage is a way to offer a choice to a

user (or any automated process), as well as a way to modify

this choice through the function fs.
Considering that a given application could be implemented

in various ways, we consider that having the choice between

code versions is also a leverage. We call this leverage the Code

Version Variability Leverage (CVV).

Definition 2. Considering a given application A, the
Code Version Variability (CVV) leverage LA is defined as
LA(SA, sc, fA), where SA = {v0, . . . , vn} is the set of
available code versions of A, sc = vc is the current selected
code version, and fA is a way to change the current code
version (e.g., executing a different binary).

In this paper, the CVV leverage is used in the specific case

of HPC applications where the different code versions are in

fact representing different parallel implementations.
Finally, in this paper we do not address the case where fA

is called during the execution of A. This is left for future

work. Instead, we consider that fA can be called between two

production runs of A.

B. Green Programming automation : from generation to usage
Green programming (GP) consists in changing the way an

application is implemented to improve its energy efficiency

(energy consumption, but also power-related metrics etc.)

Thus, automatic generation of several code versions (CVV)

is the first necessary step to simplify GP.
However, in practice, particularly in the context of HPC

applications, GP can be very difficult to apply. Actually,

implementing a single version of a large scale parallelized

HPC application is a long and difficult task, thus implementing

multiple versions become almost infeasible. Moreover, when

considering GP, the entire development process is left to the

application developer. For this reason, we propose in this paper

a complete automated process to take advantage of the CVV

leverage. This process is depicted in Figure 1.
The CVV automation process is composed of three differ-

ent phases. The first phase is responsible for the automatic

generation of code versions. To do so, we propose to use

Domain Specific Languages (DSLs). Among existing solutions

to ease HPC programming, Domain Specific Languages target

a specific domain, in opposition to general purpose (paral-

lel) languages. By explicitly knowing the targeted domain,

DSLs are able to automatically generates very efficient HPC

codes [1]–[4]. Most of the time, DSLs are used to generate

the code that reaches the smallest execution time for a given

application and a given hardware architecture. In this paper

we use DSLs as a mechanism to generate multiple versions of

a code instead of a single one, thus creating the set of states

for the CVV leverage, represented by different squared colors

in Figure 1.
The second phase of the CVV automation process is to

use a given subset of production runs of an application
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Fig. 1: Automation process of the CVV leverage

to combine leverages, thus building a knowledge, which is

complete at tk. The number of runs needed to reach a complete

knowledge tk depends on the prediction degree handled in the

knowledge building process: from “Null”, where all leverages

combinations has to be performed, to “High” where all of

the knowledge is present from start (without the use of any

previous run). One can note that the knowledge is built upon

a given set of metrics.

The knowledge built in the second phase is then used within

the third phase, for any new production run that happens after

tk, to take decision regarding the code version to use for this

new production run according to the current constraints. The

element which is responsible for this decision is called an

actor. An example of actor is the OnDemand linux governor

which chooses the DVFS current state depending on the

current system load2

More formally, let L be the set of possible leverages, and

C a set of constraints to fulfill (of any type). We also denote

states(L) the function that returns the set of states S of a

leverage L.

Definition 3. An actor a is a function that for a subset of
leverages Lsub ⊂ L and a set of constraints C ∈ Cn returns
a set of new choosen states Sres, one for each leverage of
L ∈ Lsub.Each new state s′c returned by an actor a is called
a choice.

An actor aims at fulfilling constraints by choosing new

states s′c ∈ states(L). When considering multiple optimiza-

tion objectives, possibly not compatible, a trade-off has to be

found between all constraints and objectives of C.

2https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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III. CASE STUDY DESCRIPTION

In this section is described the case-study addressed within

the paper. Regarding the automation process depicted in

Figure 1, this section presents first the application use-case,

second, the DSL used to generate CVV states, third, how

the knowledge is built and used by actors, and finally, which

constraints are handled.

A. FullSWOF2D application

As already explained, the automation process presented

in the previous section targets regular production numerical

simulations. A numerical simulation simulates a physical

phenomenon by approximating the exact solution of partial

differential equations through a set of numerical schemes

(computations). A numerical simulation discretizes the time

through a time loop. At each time iteration, a set of numer-

ical computations are applied onto the entire (or a subset)

discretized space domain (namely a mesh). A numerical sim-

ulation is typically composed of (i) a number of iteration, (ii) a

mesh size, (iii) a set of numerical parameters (single numerical

values) and (iv) a set of input data sets representing physical

quantities (e.g., speed, pressure etc.). Those physical quantities

are mapped onto the mesh.

For a given domain size (i.e., mesh size), a production

numerical simulation is used many times by physicists, modi-

fying input data sets and numerical parameters, to be as close

as needed to the real phenomenon to understand it.

A numerical simulation can be regular or irregular. In

this paper regular simulations are handled. More particularly,

stencil-based numerical simulations are considered. Thus, the

same set of computations are performed whatever numerical

values of input data sets and parameters are. As a result,

by considering the same set of machines (i.e., same cluster)

and the same input size, performance behavior of stencil-

based codes stay the same3. This makes possible to reuse

the knowledge built within the automation process for many

production runs.

As an example of production numerical simulation, we

consider FullSWOF2D4 [5] (denoted FS2D), developed at

the MAPMO laboratory, University of Orléans, France. FS2D

consists in solving the Shallow Water equations (two dimen-

sional Navier-Stokes equations) using finite volumes methods

especially chosen for hydrodynamic purposes (transitions be-

tween wet and dry areas, small water heights, etc.). FS2D is a

complex numerical simulation composed of 32 stencil kernels

and 66 local kernels [6].

As an illustration, in production, FS2D will be run many

times with the same input size. Actually inputs of FS2D

are 8 numerical parameters (e.g., hydrolic conductivity, water

viscosity, pressure etc.), and 6 input data sets (e.g., rain,

speed in each dimension etc.). Each parameter and data set

can be initialized in very different manners to study different

physical cases (already flooded grounds, dry grounds etc.)

3http://www.agner.org/optimize/instruction tables.pdf
4http://www.univ-orleans.fr/mapmo/soft/FullSWOF/

When considering simply 2 possible values for each parameter

and 2 possible input data sets, the number of possible runs is

the cartesian product 28×26 = 214 = 16, 384. This illustrates

that a production numerical simulation can be used many

times using the same input size. FS2D will be the considered

application for the rest of this paper.

B. The Multi-Stencil Language

The domain specific Multi-Stencil Language (MSL) [6]

enables to automatically generate multiple HPC code versions

of a multi-stencil numerical simulation from a lightweight

data-oriented description of a numerical application and a set

of sequential kernel codes. The semantic and performances of

MSL has been shown in [6]. In this paper, MSL is used to

generate four HPC code versions of FS2D, thus producing the

set of states SA of the CVV leverage.

These four versions are based on two different paral-

lelization techniques. The first technique, namely data par-

allelization, divides the studied domain (data) into equally

balanced sub-domains. Each sub-domain is computed by one

computational resource (typically a core) and communications

between resources are added to perform correct computations.

The second technique, namely task parallelization, divides

a program into sub-tasks. Each task is computed by one

computational resource, and task dependencies are introduced

to respect computation order. The scheduling of task de-

pendencies can be statically computed before the execution,

or can be dynamically decided at runtime. In MSL these

techniques are implemented by using the Message Passing

Interface (MPI) and the OpenMP Application Programming

Interface. The four code versions produced by MSL are: (1)

MpiBase, where data parallelization is applied by domain

decomposition and by using MPI; (2) MpiOmpFor, where

data parallelization is introduced at two different levels, first,

by domain decomposition with MPI, and second, by using

parallel loops of OpenMP; (3) MpiOmpForkJoin, where both

data and task parallelization techniques are combined, and

where the adopted task parallelization technique is a static

fork/join scheduling implemented using OpenMP; and finally

(4) MpiOmpDyn, where both data and task parallelization

techniques are also combined, but where the adopted task

parallelization technique is the dynamic scheduling of tasks

introduced in OpenMP 4.55.

One can note that these four code versions represent dif-

ferent approaches to parallelize the code. Many other code

versions could be studied such as versions using various cache

optimizations, different types of data, etc. These four versions,

though, are difficult to write by hand, thus being an interesting

case-study for GP automation.

C. Knowledge, actors and constraints

To entirely understand the case-study adressed within this

paper, it is needed to describe how the knowledge is built and

used by the automation process.

5http://www.openmp.org/mp-documents/openmp-4.5.pdf
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First, as depicted in Figure 1 the knowledge is built by

using a certain number of production runs until tk is reached,

which means that the knowledge is complete. The number of

runs to perform before reaching tk depends on the number of

possible combinations when exploring a set of leverages. In

this paper are considered two different leverages. The first one

is the CVV leverage described in Section II, the second one

is the leverage that modifies the number of MPI processes

and OpenMP threads for a given parallel application on a

given subset of nodes. This last leverage has already been used

in [7]–[9]. As an example, our complete knowledge (combina-

tions of code versions and MPI/OpenMP configurations) when

12 cores are available per machine (Table I of Section IV-A)

contains 55 production runs. As illustrated before, a very light

use of FS2D in production already leads to 16,384 runs. This

shows that our technique is realistic and feasible in our case-

study.

Of course, when increasing the number of leverages (i.e.,
the number of choices), the size of the knowledge to build

also increases. For this reason, actors could be more or less

intelligent and could need a smaller knowledge to take a

good decision (e.g., machine learning techniques). This type of

actors will be simulated during our evaluations in Section V.

For each of the production runs used to build the knowledge

(before tk), four metrics are collected. The first metric is

the Execution Time, denoted time. It measures the entire

execution time of one job, including initialization time. The

three remaining metrics are energy-related metrics. To define

these metrics, we first need to introduce some notations:

• N is the number of computing nodes used by a job;

• T = {t0, . . . , tn−1} is the set of n time stamps of energy

consumption measurements of a job; t0 and tn represent

the starting and ending timestamps, respectively;

• pij , where i ∈ [0, N − 1], and j ∈ [0, n − 1], represents

the power consumption (in Watt), of a node i for the

timestamp tj ;

• Pj =
∑

i∈[0,N−1] p
i
j represents the cumulated power

measurements of all nodes i ∈ [0, N − 1] for a given

timestamp tj ∈ [0, n− 1].

The second metric is the Maximum Cumulated Watt and is

denoted maxCWatt. It represents the cumulated maximum

power witnessed during the run of the application A for

the set of current selected states sc of considered leverages.

It reflects how much the application, when considering the

current combination of leverage states, stresses the computing

nodes on which it is executed. It is defined as:

maxCWatt = max
j∈[0,n−1]

Pj (1)

The third metric is the Average Cumulated Watt and is

denoted avrgCWatt. It represents the cumulated average

power consumption of the application A for the set of current

states. It is defined as follows:

avrgCWatt =

∑
j∈[0,n−1] Pj

n
(2)

TABLE I: Hardware configuration of Grid’5000 Taurus nodes

and TGCC Curie thin nodes

Taurus Grid’5000 Curie Thin Nodes
CPU model Intel Xeon E5-2630 SandyBridge
Number of CPU 2 2
Cores per CPU 6 8
Total Memory (GB) 32 64
Compiler [-O3] gcc 4.9.1 gcc 4.9.1
MPI OpenMPI Bullxmpi
Network 10 Gigabit Ethernet fat-tree Infiniband

Finally, the fourth metric is the Cumulated Joules and is

denoted CJoules. It represents the cumulated energy con-

sumption of the run for the current leverages combination.

It is the energy consumption of all nodes used between t0 and

tn for the execution of A. It is defined as follows:

CJoules =
∑

j∈[0,n−1]

(tj+1 − tj) ∗ Pj (3)

In the rest of this paper we consider a single constraint,

the power capping. A power capping constraint indicates a

maximum power consumption value to not overpass during

a certain period of time. This is the type of constraints

imposed by electrical providers within their contracts or

through a scheduler imposing various power capping to every

user [10].One can note that this constraint can evolve through

time. In addition to this constraint, two functions have to be

minimizes: the execution time of each run; and the energy

consumption of each run.

In this section has been presented our complete considered

case-study. This case-study illustrates that our automation

process of Green Programming is feasible. In the rest of this

paper are detailed the experiments conducted on this case-

study.

IV. EXPERIMENTAL SETUP

In this section is detailed the experimental setup used for

evaluations. First, the hardware is described, then the chosen

configurations to build knowledges are given.

A. Hardware and energy monitoring

To conduct our evaluation, we use the Grid’5000 experi-

mental platform and the Curie supercomputer. Grid’50006 is a

French large-scale and versatile testbed for experiment-driven

research in all areas of distributed computing. Experiments

presented in this paper have been conducted on the cluster

named Taurus of the site of Lyon. The hardware configuration

of this cluster is given in Table I. Each node is monitored by a

wattmetter with a precision of 0.125 Watt (W) and that reports

the average of 3600 measurements each second.

The TGCC Curie7 is a French petascale supercomputer

ranked as the 93th supercomputer of the Top500 list of

November 20178. It is composed of three different types of

6http://www.grid5000.fr
7http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm
8http://www.top500.org/lists/2017/11/
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TABLE II: Knowledge configurations on FS2D.

Knowledge Cluster #nodes Domain size #Iteration
A Taurus G5k 4 4000× 4000 100
B Thin Curie 128 20000× 20000 10000

nodes, each with a specific hardware configuration. Experi-

ments of this paper have been performed on the Thin Nodes
(Table I) of the TGCC Curie supercomputer. Measurements

on Curie thin nodes are done at the electrical cabinet with

dedicated wattmeters and are updated approximately every 5

minutes.

B. Knowledge configurations and representation

By using code versions (CVV) generated by MSL on FS2D

for Phase 1 of Figure 1, we run a set of benchmarks to build

Knowledges. A Knowledge is built upon application produc-

tion runs that combine leverages for a given configuration

(domain size and number of iterations). Moreover, each run

collects a set of metrics, as detailed in Sections II-B and III-C.

Two Knowledges have been built in our evaluations and are

summarized in Table II for Grid’5000 and Curie experiments.

To analyze multiple metrics at the same time, we have

chosen to use a pareto representation and its associated pareto

frontier (or pareto-front) formally defined for energy concerns

in [9]. Figure 2 gives an example of a 2D pareto frontier,

where each axis is a metric and each point represents measures

registered for a given job of a benchmark campaign.

Fig. 2: Pareto frontier example

Points on the pareto frontier represent the set of best

solutions (relative to the remaining points), for a trade off

between the two chosen metrics. Thus, they represent choices

where no improvement for a metric can be made without

deteriorating the second one. Points on the pareto-front are

called dominant points while others are called dominated
points. For example, in Figure 2, where both metrics have to

be minimized, choosing B over A decreases the first metric but

increases the second one. Points C, D, and E are dominated

by A, which means that both metrics increase compared to A.

There is a wide panel of possible trade-offs between two

chosen metrics. The trade-off could be between two energy

metrics or between an energy metric and the execution time.

Our benchmark framework executes a set of jobs which

are the combination of two application leverages. First, the

set of available code versions of FS2D (CVV), and second,

the MPI/OpenMP configuration chosen to run FS2D. From

the results produced by one campaign, a pareto can be built,

where each point represents one job. To build a pareto, two

metrics among the described ones in Section III-C have to be

chosen.

V. CASE STUDY EVALUATION

This section presents the evaluations of, first, the CVV

leverage alone, second, the CVV leverage combined to the

MPI/OpenMP leverage. Finally, we present through simulation

two complete production scenario evaluations.

A. Evaluation of the CVV leverage

First, we would like to show in our evaluations that choosing

one code version or another while mesuring time, maxCWatt,

avrgCWatt and CJoules, leads to a non trivial tradeoff. Table III

reports measurements of the four metrics when executing the

same knowledge configuration A, with the four code versions

generated by MSL, on a single Taurus node. The Taurus node

is used with its full capacity, thus using its 12 cores.

From Table III, we can obserse that “MpiOmpFor” and

“MpiOmpForkJoin” are minimizing time and CJoules, respec-

tively. However, these code versions also have the highest

values for maxCWatt and avrgCWatt. As a result, and as

expected, a correlation exists between the execution time

and the energy consumption (CJoules). However, minimizing

these metrics leads to high power consumption that could be

problematic in the case of power capping constraints either

for a cluster administrators or a green scheduler translating

energy budget to a power capping. Moreover, Table III shows

that for every state of the CVV leverage (code version), non

negligible variability can be observed in the four metrics.

B. Combination of CVV and MPI/OpenMP leverages

When combining the CVV leverage with the leverage that

configures the number of MPI processes and the number of

OpenMP threads, the number of possible choices to get the

best trade-off between metrics increases, thus the choice can

be improved. Both Figures 3a and 3b illustrate this claim.

In Figure 3a, Knowledge A is built with four nodes of

the Taurus cluster of Grid’5000. Each symbol (or color)

refered to one code version among the four code versions

generated by MSL on FS2D. For each code version, many

TABLE III: Time, maxCWatt, avrgCWatt and CJoules for

the four different code versions generated by MSL on FS2D

(CVV).

time (s) maxCWatt avrgCWatt CJoules
MpiOmpDyn 133.37 253.25 237.97 31916.5
MpiOmpFor 128.25 257.87 239.80 30854.12

MpiOmpForkJoin 130.75 257.0 239.29 31515.25
MpiBase 142.5 254.87 235.22 33733.87

999



different configurations of MPI/OpenMP are possible, each

point for one symbol (or color) represents one configuration.

For example, the code version MpiOmpForkJoin can be run

be using 4 MPI processes and 12 OpenMP threads per MPI

process, or can be run by using 8 MPI processes and 6

OpenMP threads per MPI process. In this case cores of the four

nodes are fully used (12 per node), but the same benchmark

can be executed by using only 4 MPI processes and 2 OpenMP

threads, etc.

Figure 3a presents a pareto on the metrics time and

avrgCWatt, where all runs of the knowledge A are represented

(55 different runs). Each run has been performed 8 times and

a median is computed. The pareto frontier is represented in

blue. One can note a variability of code versions on the pareto

frontier. This means that among the set of best choices for a

trade-off between time and avrgCWatt, multiple code versions

are represented. As a result, the CVV leverage improves the

trade-off that MPI/OpenMP leverage alone could reach.

For example, in Figure 3a, if we consider a power capping

constraint set to 600W , the chosen state for the CVV leverage

would be “MpiOmpDyn” (associated to a given MPI/OpenMP

configuration). In fact, it is the first point on the pareto-front to

answer the fixed constraint. Thus by definition, it is the point

that minimizes execution time while satisfying this power

capping constraint.

One can note that the same result can be observed on Curie

regarding the knowledge B in Figure 3b. Because of our

limited access to thin nodes of TGCC Curie, one can note that

less jobs have been performed than on Grid’5000 resulting in

less points onto the pareto, thus an incomplete knowledge.

However, the same conclusions can be taken as the results

show that different code versions are represented on the pareto

frontier. As a conclusion, the CVV leverage is also interesting

at large scale.

C. Simulation of Production Scenarios

To have a complete control over the applied scenarios,

we have chosen to simulate different production and power

constraints scenarios.

The knowledge presented in Figure 3a is used within our

simulation. Three different elements are simulated within a

given scenario: (1) the production scenario; (2) the energy and

power constraints considered during the production scenario;

and (3) the set of actors considered.

1) Production scenarios: The first production scenario is

called soft. A total number of 210 = 1, 024 runs are performed

within this entire production scenario which is much less than

the example given throughout this paper (16, 384 production

runs). Thus, this scenario is not in favor of our process. This

production scenario has a low frequency usage with four runs a

day (two of them during the night, and two of them during the

daytime). This scenario represents a soft arrival of production

runs during 256 days.

In the second production scenario, namely hard, the same

total number of runs are performed. However a high arrival

frequency is simulated. Actually, twenty runs are performed

per day which leads to a hard use of production resources for

52 days (51 full days, plus 4 extra runs during 52th day). To

make these scenarios more realistic we also introduce vacan-

cies or maintenance periods where runs are not performed.

2) Constraints: For the power constraints, we have chosen

to simulate two types of power capping constraints. On one

hand, the first constraint, namely Fixed, represents a power

capping value (i.e., maximum value to not overpass) constant

through time. To choose a real case power capping for knowl-

edge A, we refer to results displayed in Figure 3a, where we

have chosen the rounded value equidistant to the minimum

and maximum reached avrgCWatt on the pareto-front. Thus,

650W has been chosen as Fixed constraint.

The second power constraint is denoted day-night. In this

constraint, the maximum power value is low during daytime

and high during night. For knowledge A, 600W and 800W
have been chosen for day and night power constraint, respec-

tively.

3) Actors: The two first actors considered in our simulation

do not base their choice on any knowledge. The first actor of

this family is called Usual. This actor illustrates what usually

happens in production, i.e., a single code version and a single

MPI/OpenMP configuration are used for all runs. The second

one is denoted Random. This actor randomly chooses one

code version and one MPI/OpenMP configuration for each

production run. One can note that both Usual and Random can

perform choices that do not respect input constraints. However,

the power capping constraints has been chosen such that Usual
never violate it. One can note that this choice is not in favor

of our process once again.

The third actor is the one we advocate in this paper. It

is called BuildKlg. This actor makes choices by using a full

knowledge (i.e., complete paretos).

The last considered actor is called Ideal. This actor uses

advanced machine learning strategies to be able to make

choices with a partial knowledge of previous runs. Thus, this

actor reduces the number of runs needed to reach tk. As this

paper does not focus on the proposal of new actors, we have

made the hypothesis that this Ideal actor is able to accurately

discover the complete knowledge without any previous run,

which would be the perfect actor, even if not feasible. Thus

this actor represents the theoretical best case of our simulation.

Both BuildKlg and Ideal aims at first respecting power

capping constraints and second minimizing execution time and

energy consumption.

4) Simulation results: This section analyses the results of

simulation for every proposed actor on any production scenario

and for any considered power constraint.

Two metrics are considered in results. First, the Violation
metric represents the amount of joules consumed over the

fixed power limit (the bigger the value, the worst the actor is).

We could imagine that every joules consumed over the limit

represent an extra cost. This metric is relevant to a user that

estimates that power capping must not be exceeded, during all

run. However, as the input cost per joule highly depends on

the infrastructure or electrical provider policies, we represents
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Fig. 3: Paretos with metrics time and avrgCWatt, for knowledges A and B of Table II.

TABLE IV: Simulation results based on knowledge A in terms

of energy consumption, violation of constraints, and associated

percentages compared to the Usual actor.

Actor Energy (J) Violation(J) % gain % Violation

Soft, Fixed
Usual 54192768,00 0,00 0,00 0,00
Ideal 31659648,00 0,00 41,58 0,00
Random 55849891,19 7465509,76 -3,06 13,37
BuildKlg 32619458,62 133449,82 39,81 0,41

Soft, Day-night
Usual 54192768,00 0,00 0,00 0,00
Ideal 43075597,13 1440879,81 20,51 3,35
Random 55867662,19 7074282,00 -3,09 12,66
BuildKlg 43567042,87 1686303,71 19,61 3,87

Hard, Fixed
Usual 54192768,00 0,00 0,00 0,00
Ideal 31659648,00 0,00 41,58 0,00
Random 55179811,31 3242795,56 -1,82 5,88
BuildKlg 32619458,62 133449,81 39,81 0,41

Hard, Day-night
Usual 54192768,00 0,00 0,00 0,00
Ideal 47837186,63 288175,96 11,73 0,60
Random 55849891,19 7465509,76 -3,06 13,37
BuildKlg 48165244,49 573153,42 11,12 1,19

the percentage of violation metric rather than the cost. Second,

the total energy consumption is represented.

Table IV displays the results of these simulations. The

total energy consumed and the violation of constraints are

represented for every scenario. Percentage of saved energy, and

constraint violation are given using the Usual actor as a refer-

ence. Actually, for the Usual actor, the CVV leverage position

is set to mpiOmpDyn. While the MPI/OpenMP leverage is set

to 4/10 (4 MPI processes and 10 threads per MPI process).

Moreover, we have chosen this configuration because it always

answers power capping constraints. Thus the simulated overall

consumption of Usual actor will always be the same, given that

the chosen run is always the same.

Regarding the violation rate, Random is the worst actor. One

can note that BuildKlg has very low percentage of violation

(3.88% in the worst case, 0.41% in the best case). Moreover,

BuildKlg is very close to Ideal which is the best possible

actor for this metric. The differences between these two is

the discovery part. In fact, during the pareto construction (dis-

covering all the CVV and MPI/OpenMP states combinations)

the BuildKlg actor violates the constraints. Even Ideal has

penalties on Day-Night senario. This is due to the fact that we

only consider knowledge of constraints at the start of a run.

Thus, such penalties are due to a change of the constraint value

during the run (e.g., for job starting the night and finishing

during the day).
If we only focus on the percentage of gain compared to

Usual, the tendencies are the same for every scenario. Random
is always worst than Usual (negative percentage of gain),

showing that the state of both the CVV and the MPI/OpenMP

leverages is not something to choose randomly. For BuildKlg,

we can see that for each case, energy savings are not negligible

(around 11% in the worst case, and up to 39% in the best

case). Ideal reaches the best energy savings but is very close

to BuildKlg (a difference of 1.77% in the worst case), implying

that such a clever actor may not be needed, in our case study.
In our evaluations we have shown that our automated

process of Green Programming is applicable on a real case-

study, and can almost reach ideal results for both the total

energy consumption and the rate of power capping violations.

Thus, this work leads to energy and money savings.

VI. RELATED WORK ON APPLICATION LEVERAGES

Many works have dealt with the configuration variation of a

given application to get an energy-aware usage of computing

nodes. In [9], authors provide a mathematical formulation of

the multi-objective performance tuning problem. The work

shows that energy-aware configurations of application are

possible. The number of MPI processes and the number of

OpenMP threads are again both used as leverages.
In [11], authors present a predictive model to estimate power

consumption and computation performances (i.e., execution
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time). The prediction is made for a given device. A single

version of code is given for each device from CPU to GPU.

Thus, in this work, the selected version of code is actually

used to choose the best type of hardware to save energy.

In [9], authors explore the variability of the energy consump-

tion of multiple CPU while using DVFS. Code versions are

provided as different binaries of the same application. Thus,

the work points out the possibility of obtaining multiple energy

consumption behaviours by selecting a version of code while

varying the frequency of the processor.

In [12] authors use an auto-tuning framework to study

different code versions under energy concerns. Thus, this work

is close to our contribution. Actually, our automation process

could be compared to an auto-tuning solution. However, a

first difference is that the above work is limited to the first

phase of our automation process, not considering production

scenarios and knowledge construction time. Second, the auto-

tuning framework used in the work generates different loop

transformation strategies while we study different parallel

code versions of a production numerical simulation. Finally,

our contribution also combines two different application level

leverages to enhance possible choices.

As a sum-up, previous related works have shown that the

configuration of the number of OpenMP threads and (or)

the number of MPI processes help controling the energy

consumption of nodes. Several other recent works have studied

code variability as a possible leverage. However, none of the

previous papers have contributed to an automation process of

the CVV usage, and none of them have defined and used

the CVV leverage as presented in this paper. Moreover, none

of these works have studied the feasability of such Green

Programming (GP) concept for production HPC numerical

simulations. Finally, none of the previous papers have explored

an evaluation of two application level leverages (configuration

and version of code leverages) in the same experiment, which

enhance energy choices.

VII. CONCLUSION

In this paper, four contributions have been presented toward

automated Green Programming in HPC context. First, we have

introduced a formal definition of the Code Version Variability

(CVV) leverage. During evaluation, we have underlined that

the usage of the CVV leverage alone, as well as combined

with another leverage, offers more variability of choices, thus

better trade-offs between execution time, energy consumption

and power metrics.

Second, we have presented and detailed a first approach

toward Green Programming (GP) automation in the specific

case of production applications that are regulars.

Third, our automation process of GP has been applied to

a real case-study where a real-case numerical simulation has

been selected, where a real-case DSL [6] has been used to

produce different code versions, and where r constraints have

been considered. This case-study have shown the feasibility of

our automation.

Finally, we have shown in our evaluations that our auto-

mated GP, applied onto our case-study, gets significant energy

savings as well as very low constraints violations. compared to

a usual production case (no leverages considered), compared

to a random case (by

Future work includes the integration of such an automation

within middleware level leverages such as a schedulers. We

also plan to combine our approach with hardware leverages

like DVFS or Shutdown techniques. Finally, we would like to

consider reconfiguration of code versions at runtime.
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