
Sustainable Blockchain through Proof of eXercise

Ali Shoker
HASLab, INESC TEC & Minho University

Braga, Portugal

ali.shoker@inesctec.pt

Abstract—Cryptocurrency and blockchain technologies are
recently gaining wide adoption since the introduction of Bitcoin,
being distributed, authority-free, and secure. Proof of Work
(PoW) is at the heart of blockchain’s security, asset generation,
and maintenance. Although simple and secure, a hash-based PoW
like Bitcoin’s puzzle is often referred to as “useless”, and the
used intensive computations are considered “waste” of energy. A
myriad of Proof of “something” alternatives have been proposed
to mitigate energy consumption; however, they either introduced
new security threats and limitations, or the “work” remained
far from being really “useful”. In this work, we introduce Proof
of eXercise (PoX): a sustainable alternative to PoW where an
eXercise is a real world matrix-based scientific computation
problem. We provide a novel study of the properties of Bitcoin’s
PoW, the challenges of a more “rational” solution as PoX, and
we suggest a comprehensive approach for PoX.

Index Terms—Cryptocurrency; Blockchain; Bitcoin; Dis-
tributed Systems;

I. INTRODUCTION

Since the introduction of Bitcoin [37], cryptocurrency is

increasingly drawing the attention of business, industry, and

academia [8], [24], [11], [3], [26], [49], and the exchange

rate of Bitcoin currency is still going steep1. The concept

is based on using cryptographic tamper-proof public ledger,

called blockchain, to protect the generation and transfer of
“digital” money in a fully distributed peer-to-peer (P2P)

fashion. The goals of cyrptocurrenices are mainly to avoid

central authorities (like banks), reduce transaction delays and

fees, and preserve the real value of money by backing the

currency with some “work”, done through mining — to the

contrary of gold-backed or fiat currencies (e.g., USD, Euro,

etc.). At the heart of blockchain, mining maintains the security

and correctness of the system and generates (a.k.a., mines)

money as a reward for the miner’s work, namely, adding

new blocks (of transactions) to the blockchain, and verifying
the protocol’s invariants [44]. Being a critical part of these

systems, the “work” is made credible through providing a

tamper-proof Proof of Work (PoW). The properties of PoW

are discussed further in Sections II and III.

In most cryptocurrencies, and mainly Bitcoin, the “work”

a miner must do is to solve a cryptographic puzzle: to

The author is supported by SMILES track of TEC4Growth project
(NORTE-01-0145-FEDER-000020), and the EU H2020 LightKone project
(732505).
1According to https://www.coindesk.com/, one Bitcoin is worth 3600 USD

— by the time of writing this paper.

find a random nonce that once (cryptographically) hashed

with a perspective block header, returns a 32 Bytes num-

ber having a leading pre-defined number of zeros (called

difficulty) [50]. This puzzle represents the PoW, and lives
forever in the blockchain (together with the block), allowing

for future verifications. Unfortunately, solving the puzzle is

a very computation-hungry process that manifests in very

high energy consumption, controversial to the recent trend

and demands of sustainable and environment-friendly tech-

nology [25], [41]. For instance, recent studies have shown

that the annual electricity consumption of Bitcoin system is

equivalent to that of Ireland in 2014 [38], and is expected to be

similar to that of Denmark in 2020 [14]. This raised the voices

referring to Bitcoin’s hash-based puzzle as “useless” work;

whereas, Bitcoin proponents consider this a legitimate price

for maintaining the system. The latter claim being (partially)

sound, we argue that the work can be more rational if the
puzzle itself is useful, rather than being random. Therefore,

we propose an approach to replace the hash-based puzzle with

solving scientific computation problems [39], [40].

In the same direction as ours, several attempts have been

made to reduce the “wasted” energy following two main

approaches. (We omit Byzantine Fault Tolerance approaches

being not scalable in public settings [49].). The first is to

introduce new forms of mining proofs like Proof of Stake
(PoS) and its variants [30], [33], [45], [6]. Creating blocks

in PoS is based on coin age: a function of coin balance
and earning time. The proposal is often criticized that coin

age accumulates even when the node is not connected to

the network, and being non-democratic solution — biased

to wealthy peers. The other variants like Delegated Proof-of-

Stake [33] and Proof of Stake Velocity [45] tried to address

each issue aside, leaving the other open and inducing new

limitations or security threats [48]; whereas, Proof of Activity

(PoA) [6] is a hybrid solution of PoS and PoW, where

computation is still considered wasted on a useless nonce.

The second class tried to simply replace the puzzle with

a more useful real world problem, as we do. However,

the proposals fall short at addressing a wide range of real

interesting problems. For instance, Primecoin [29] suggested

finding prime numbers instead of a random useless nonce;

Permacoin [35] tried to use have the miners to invest on the

system’s storage and memory through Proof of Retrievability;
while PieceWork [42] tried to outsource work like spam

deterrence and Denial of Service defense.978-1-5386-1465-5/17/$31.00 ©2017 IEEE

1

2

3

4
5

7

8

6

9

10

11 12

13

Employer Blockchain

XBoard

Miner

Shuffler

Shuffler

XDB2

XDB1

Fig. 1. The workflow of PoX without verification. Verification occurs in a
similar manner to the steps from 5 through 13 on a verified instance. Refer
to Section V for more details.

In this work, we introduce Proof of eXercise (PoX), an
approach to rationalize mining in cryptocurrencies — focusing

on Bitcoin — through solving a real eXercise: a scientific

computation matrix-based problem. The choice behind matrix-

based problems is two-fold: (1) matrices have interesting

composability properties that help in tuning difficulty, col-

laborative verification, and pool-mining (see later); and (2)
matrix-based problems span a wide range of useful real world

problems, being a principle abstraction for most scientific com-

putation problems, among them: DNA and RNA sequencing

and data comparison [1], [7], protein structure analysis, im-

age comparison, object superposition, surface matching [15],

[2], collaborative-filtering recommendation, data mining [28],

computational geometry [19], face detection, image compar-

ison, object superposition, surface matching [15], and many

others [28], [40].

To emphasize on the challenges we faced in PoX, we adopt

a down-top presentation approach: we first drive a novel and

comprehensive analysis on the properties of Bitcoin’s hash-

based PoW (in Section III). Confronted with PoW’s properties,

we then show that the challenges facing a real puzzle like

eXercise is indeed far beyond that of PoW due to: (1) the

lack of tunable hardness and easy verification methods, (2)

required commitments to solve and maintain an eXercise and

its solution, (3) preventing collude, etc. We analyze these

challenges in Section IV and propose corresponding solutions.

After that, we make use of the discussed solutions to build a

comprehensive Proof of eXercise solution in Section V.

In a nutshell, the workflow of PoX (shown in Fig. I) is as

follows: an employer has an eXercise (e.g., a huge matrix-
based scientific problem) to solve in Bitcoin; it stores it in

a highly available store and keeps a hash digest and access

details. It then deposits some credit in a blockchain transaction

to guarantee the availability of eXercise until the process ends.

The hash digest is then shuffled (i.e., randomized) before being

presented on a public board (XBoard) for miners bidding,
which occurs randomly (to avoid collude). A miner commits to

solve eXercise (also through a blockchain deposit transaction)

to be granted access details to its storage place. Once the miner

solves eXercise, it stores the solution and provides access

guarantees (as before), and publishes the (shuffled) digest to

verifiers (to avoid collude).

Similarly, verifiers also commit to verify an eXercise (before

access rights are granted) and to store the verified data instance

(for further audit). Verifiers use a probabilistic verification
scheme to collaboratively verify — possibly different — parts

of the solution. Once a sufficiently high number of verifiers

approve the solution, it becomes valid, and the PoX is created

based on all the signed verifications as well as the block

header digest (to prevent using this PoX for many blocks).

The PoX lives forever with the block, but can no longer be

verified once the stored eXercise, the solution, and the verified

instance become unavailable. This is arguably sufficiently safe

given the tradeoff of probabilistic verification, i.e., to reduce

the huge storage overhead of scientific data — more details

in Sections IV and V.

To get the reader more familiar with the subject, we

overview Bitcoin in Section II, and we postpone related works

to Section VI, just before the conclusion (Section VII).

II. BACKGROUND ON BITCOIN

As defined by Satoshi Nakamoto — an anonymous author

— in the Bitcoin seminal paper [37], Bitcoin is a peer-

to-peer (P2P) electronic cash system often referred to as a

cryptocurrency [8], [6], [32], [29], [35]. The currency itself

(i.e., the asset) is made of digital bits secured via intensive

cryptographic techniques making it extremely hard to invent

“bit-coins” out of thin air, steal them, or modify confirmed

transfers. Being P2P, Bitcoin brings many advantages over

classical banking-based currencies: no authorities are needed

to make transfers, transfers are faster and cheaper, trans-

parency, credible smart contracts, and others [43].

Bitcoin payments, transfers, and smart contracts are im-

plemented though transactions. To transfer money (a.k.a.,

Bitcoins) from a spender to a receiver, the corresponding

transaction must include the sources of the money transferred,

i.e., hash digests (representing unique identifiers) of previous

transactions through which the current spender earned the Bit-

coins earlier. Transactions are digitally signed by the spender

to prevent masquerade and ensure that transactions are issued

by their owner, and are protected by the public key of the

receiver to guarantee that only the true receiver can spend the

money later.

However, given the underlying distributed model, deprived

from central authorities, the described cryptographically pro-

tected P2P transaction scheme cannot prevent the spender

from creating two “concurrent” transactions to spend the same

amount (that refers to the same source transactions) twice, a

problem known as double spending. Consequently, transac-
tions are usually collected in a chain of blocks, representing a

public ledger, i.e., the blockchain. Block creation is carefully
tuned (see later) to enforce global consensus on the order of

blocks across the entire Bitcoin network. Blocks are chained

together in a similar fashion to transactions, ensuring that no

block can get squeezed through previously confirmed blocks

— the current design unfortunately allows for some forks in

the blockchain when two blocks are created at “the same time”,

which leads to adopting the “longer” chain.

The order of blocks in the chain is globally defined by

challenging block-creators, called miners, through solving a

very hard cryptographic puzzle: search for a random nonce
that once hashed with the digest of the block header generates
a hash of a predefined number of leading zeros (see details

in Section III). This hard “work” has two main roles. The

first is to stand as a Proof of Work to generate, i.e., mine,

Bitcoins as a reward to miners for maintaining the blockchain

and verifying the protocol’s correctness. The second is to

tune the rate of creating blocks by forcing a global consensus

through periodically calibrating the hardness of the puzzle —

by simply changing the required number of leading zeros in

the hash. The rate of Bitcoin’s block creation is usually tuned

to around six blocks per hour.

The interesting properties of Bitcoin’s PoW, i.e., being hard

to solve and easy to verify (among others discussed next),

come at the price of high computation demands, reflected

as a steep energy consumption similar to the electricity con-

sumption of entire countries [38], [14]. Consequently, despite

the essential guarantees that Bitcoin’s PoW provides, like

security and maintaining the blockchain, many researchers

consider finding the nonce a waste of energy being “useless”.
This motivated more sustainable alternatives like Proof of

Stake [30], Proof of Activity [6], Proof of Retrievability [35],

and Proofs of Useful Work [5].

III. BITCOIN’S POW PROPERTIES AND CHALLENGES

The several attempts to make the hash-based PoW in [30],

[6], [35], [5], [33], [42] were either limited to a narrow

range of concrete “useful work” or introduced new undesired

properties. Importantly, the proposed solutions are often based

on meta-data that may be retrieved from the system in a secure

and efficient way, keeping the challenges somehow close to

those of the current Bitcoin’s hash-based PoW (follow next).

Indeed, addressing concrete scientific problems incurs new

significant challenges — that are not thoroughly studied by the

community — like efficiency, commitment, anonymity, etc.,

which require non-trivial solutions and trade-offs. To identify

these challenges and address them, we need a reference

baseline properties to compare against. Since we are unaware

of such a comprehensive study, we found it intuitive to first

analyze the properties of Bitcoin’s PoW first, and try to meet

them in our solution (in the following sections).

To analyze the properties of current hash-based PoW in

Bitcoin, we need to understand the structure and the role of

PoW in more details. As described in Section II, the miner

collects the transactions (usually paid by the spender) to be

included in the prospective block it is trying to commit, and

it constructs the block header. The block header at this stage

is not complete as it retains information about the included

transactions — together with a digest of the previous block,

current difficulty, timestamp, protocol’s version — but missing

the nonce. We refer to the block header prior to adding the

nonce as Bh. Then, the miner tries to solve a cryptographic

puzzle that is composed of Bh and a random n ∈ N such that:

HBh
(n) = SHA-2562(Bh | n) ≤ τ

where H is a SHA-256 [52] hashing function that once

applied twice to the concatenation of Bh with the nonce n,
returns a positive integer not greater than a predefined target

τ . The role of the miner is to find the nonce n that satisfies
this inequation, which leads to the first property:

(P1) Puzzle Hardness Solving the puzzle must have a notion
of hardness that manifests in the PoW itself.

Hardness in PoW is crucial for security reasons: it deters

the adversary from constructing new blocks to possibly incur

conflicting transactions and succeed in double spending. In

Bitcoin, the creation of a block (i.e., solving the puzzle) is

rewarded by Bitcoins, which is believed to be an incentive for

an adversary to solve the puzzle and provide the corresponding

PoW, rather than attacking the system. Therefore, the hardness

must be reflected in the PoW.

Indeed, cryptographic hashing is interesting as the inverse

function H−1
Bh
does not exist. Consequently, to find the nonce

n, miners keep incrementing it until the function HBh
(n) ≤ τ

holds true. Since n is implemented as a 32 Byte (i.e., 256
bits) integer in Bitcoin, the possible values of n are 2256

which is an extremely huge number to cover in a short time.

(Given the current difficulty τ ≈ 1012, specialized hardware
having a hash rate of Terahashs/s [51] need several years to

solve the puzzle [50].) Despite the fact that this randomness

my lead to finding the nonce quickly, on average, a single

miner will not often succeed in solving the puzzle in 10

minutes, which is the typical maintained time to create a

new block by the entire network — and thus the miner

has to restart the process from scratch as Bh will change.

Maintaining this time frame is guaranteed by modifying τ ;
and here comes the second property:

(P2) Tunable Hardness The hardness of the work must be
deterministically tunable.

Tuning the hardness of the work is required for two reasons:

a business reason that ensures transactions are being commit-

ted within acceptable delays, and a technical reason which

helps reaching consensus, i.e., by inducing an explicit delay

required to enforce a global order on the blockchain. Con-

sequently, τ is a tradeoff between the business and technical
demands. In fact, it is clearly desirable to commit transactions

faster from a business perspective (which is a main reason

behind using cryptocurrencies), but unfortunately, doing this

makes it almost impossible to construct a single chain of

blocks. Indeed, despite maintaining a 10-minutes interval, the

blockchain is still subject to forks, which can be resolved by

adopting the longer chain2. This comes at the price of waiting
more time once higher security, called confirmation level, is
required [44].

In addition, tuning hardness must be deterministic across all

nodes for correctness (i.e., to impose a fixed delay of mining

rate) and fairness. In particular, tuning hardness in Bitcoin is

done in a deterministic way by increasing/decreasing τ every
2,016 blocks. This is done by using the block’s timestamps

to calculate the number of seconds elapsed between the

generation of the first and the last of those recent 2,016 blocks.

The target is to maintain an approximate of two weeks rate

(which leads to an average creating six blocks per hour).

Another form of tuning the difficulty of a problem is

to break it down to smaller sub-problems, leading to the

following property:

(P3) Embarrassing Parallelization The work shall easily be
broken down into smaller (i.e., easier) problems.

This property is not essential for PoW’s correctness, but it

is rather important for business reasons (i.e., pool mining).

Indeed, a puzzle may require years to solve by a miner,

yielding delays in the expected profit, and most likely losing

mining efforts if the difficulty τ got higher or the transactions
got committed in another block. Consequently, it is crucial

for miners to join forces and solve the puzzle faster. In a

manner similar to parallel computing, the puzzle should be

easily divided into embarrassingly parallel [23] sub-problems
where miners in a mining pool [44] can work in parallel to
solve the puzzle. Indeed, a hash-based PoW is embarrassingly

parallel as different miners can search for the nonce within

different sub-domains.

On the other hand, despite tunable hardness and

parallelization, the PoW must be easy to verify, and

thence the next property:

(P4) Easy Verification The PoW must be “easy” to verify.

The entire Bitcoin’s protocol and underlying invariants must

be verified by the peers themselves, otherwise the entire

system and the currency will be untrustful. Consequently, the

verification must be easy otherwise peers will likely avoid it

and try to solve a new puzzle instead (which is rewarding).

We do not accurately specify how easy verification is, but in

principle, it must be orders of magnitude easier than solving

the puzzle to be able to verify the always-growing blockchain

(that is estimated by 2,016 every two weeks). Bitcoin’s PoW

is interestingly very easy to verify; it only requires verifying if

HBh
(n) ≤ τ holds, knowing that n is already known by now

2The term “longer chain” is misleading as it refers to the longer work (in
time) done rather than the number of blocks in the fork.

(and remember that the hash rate of current mining hardware

is several Terahashs/s).

Notice that we did not explain the use of Bh in HBh
so

far, which is crucial for the fifth property:

(P5) Block Sensitivity The PoW must be sensitive to the

committed block.

A PoW must correspond to a particular block otherwise

one can simply use the same puzzle to commit two blocks

in the blockchain, thus creating a double spending attack. In

Bitcoin, this is prevented by having Bh tight to the current

block. Indeed, the structure of Bh in HBh
(n) is as follows:

Bh = [V | Bhashprev | MTreetxns | utime | τ]
which guarantees that the PoW exactly corresponds to the

block of: protocol version V , exact predecessor block hash
Bhashprev , exact set and order (i.e., Merkle tree hash) of

transactions MTreetxns, at Unix epoch time utime, and with
a predefined difficulty τ . Given all these details, it is almost
impossible to associate the PoW to another block.

IV. PROOF OF EXERCISE (POX)

We now define the eXercise problem and discuss the

challenges to build a PoX by addressing the aforementioned

properties P1-5, and proposing corresponding potential solu-

tions. At the end, we introduce a comprehensive solution for

PoX based on these suggestions. (We adopt this down-top

presentation style to emphasize on the challenges).

A. Matrix, as an eXercise

In PoX, we try to solve computation-intensive scientific

problems [39], [40], [57], in contrast to hash-based puzzle

in PoWs. A nice observation is that many scientific problems

can typically be reduced to matrix-solving problems (matrix

product, determinant, eigen vectors, orthogonal vectors, etc.)

as in DNA and RNA sequencing and data comparison [1], [7],

protein structure analysis, image comparison, object superpo-

sition, surface matching [15], [2], collaborative-filtering rec-

ommendation, data mining [28], computational geometry [19],

etc. Consequently, devising a matrix-based PoX can address a

wide spectrum of scientific problems. Now, we formulate the

problem as follows.

Consider a number of matrices X1, X2, . . . , Xp and Y such

that:

X1 ◦X2 ◦ · · · ◦Xp = Y

where ◦ is a matrix operator, e.g., product, sum, Schur product,
etc. (Although this can be generalized further to include

more complex combination of operators, we opt to keep the

presentation easier.) Since an eXercise is supposed to be hard

to solve, we require the matrices Xi, as well as Y , to have
a very high dimension (e.g., an order of millions or more),

and all matrices Xi not to be highly sparse (further discussion

later).

A miner is assigned an eXercise X1 ◦ X2 ◦ · · · ◦ Xp to

solve, and return Y ′. The role of the PoX is to prove that

X1 ◦ X2 ◦ · · · ◦ Xp = Y ′ holds, and importantly, that the
exact miner (or mining pool) has solved it. This raises several

challenges we address in the following.

For ease of presentation, and without loss of generality, we

reduce the eXercise to a matrix product AB of two square
matrices A and B of dimension n, where:

ABij =
n∑

k=1

Aik ×Bkj

B. The Challenges of PoX

Now we discuss the challenges of PoX by referring to the

five properties P1-5 of hash-based PoWs. Our analysis shows

that PoX does not naturally guarantee the aforementioned

properties, and it thus requires special techniques, we

introduce, to satisfy them. Some of these techniques will

be used later to assemble a comprehensive PoX solution.

Furthermore, considering PoX allowed us to observe salient

properties for hash-based PoWs that were not explicitly

mentioned in literature.

1) Proof of hardness: Solving the matrix product is known
to be O(n3). Although more efficient algorithms of O(2. 373)
were recently found in theory, current implementations are

less efficient than the naive solution [54]; and thus we don’t

consider them here for simplicity. In computational science,

the matrix dimension n can grow up to Billions [57], [36], [7],
[28], and thus a petaflops machine may take several months
to solve the matrix product, which may serve as an PoX

for cryptocurrencies. However, unfortunately, the algorithm’s

hardness is not accurate in reality once the values of the matrix

are considered. For instance, a sparse matrix can be solved

faster than a dense one [55], and the matrix product of the

identity matrix In×n is trivial.

Consequently, the hardness of PoX should be instance-

based and not algorithm-based. In other terms, it should

be eXercise-based rather than matrix-product-based, which

requires including a “proof of hardness” (PoH) in each

PoX eXercise considered. In the case of matrix product, a

PoH can be a computationally efficient script to estimate
the sparseness or structure of a given matrix [34]; whereas

different methods may be required once the eXercise is not

matrix product. The PoH must be associated with the PoX

eXercise which is only accepted (by miners) as valid eXercise

if the sparseness level exceeds a pre-defined threshold. Since

this paper focuses on the technical challenges of PoX, an

interesting complementary research is to precisely identify

what factors may affect problem hardness in each eXercise,

and what efficient scripts can be included within PoH to

guarantee a certain level of PoX eXercise hardness.

2) Hardness tuning through batching: Tuning hardness is
not as simple as in hash-based PoW since the eXercise may

not be modified, being the main target. In some cases [5],

[53], a matrix can be modified or extended with fake numbers

to increase the difficulty accordingly, whereas in others, as in

our matrix product eXercise, the result will be irrelevant. To

address this, it can be useful to use compositions of matrix

problems, batched in a single eXercise. We envision two

methods. The first can be to add N complete fake matrices Fk

where the miner is required to solve all binary matrix product

combinations. For example, the product of two matrices A

and B can be transformed into multiple binary product of all

matrices A, B, F1, F2, . . . , FN . In this scheme, the product AB

is the only interesting combination for an employer (the entity
who proposes an eXercise). This literally means some work is

being wasted — a bit against the soul of “rational” work —

and can be mitigated if the matrices Fk are real meaningful

problems as well.

A second more interesting scenario is to batch different

eXercises in a single one to achieve a required hardness

level. The batched eXercise is then solved by miners through

providing corresponding solutions for all embedded individual

problems (whose number can be pre-defined a priori). Only

in the case where all batched problems are verified (see later),

a PoX is considered correct, and a corresponding block can

be committed. Notice that batching can also be used in the

current hash-based PoW through dividing Bh into m parts

and finding m nonces to commit the block.

Reducing the difficulty is however intuitive since matrix

product is naturally parallizable via divide and conquer [23].
Therefore, the hardness of a matrix product can be reduced

by transforming it into a block matrix product where each
block product stands as an independent eXercise (assembled

latter by the employer).

3) Parallelization through Map-Reduce: Parallelization in
PoX is straightforward as matrices are natively parallizable.

In fact, matrix-based algorithms are the typical use-cases for

map-reduce parallel computing [23], [57]. For our matrix

product example, in a mining pool, a pool operator can map
the matrix product AB into n different AiB matrices (where

Ai is a row matrix), and thus assigning them to available

miners in the pool. We do not address the pool mining problem

in details in this paper, but it would be interesting to discuss

if some guarantees as those in Byzantine fault-tolerant Map-

Reduce [12] can be provided. The operator can then reduce
the maps and commit the block. In the case of PoX batching,

the operator can simply assign miners individual problems in

the batch. The challenge here is that the pool operator doesn’t

necessarily — and should not — trust the solutions provided

by pool miners, which requires an efficient way to verify

correctness (and obviously not re-solving the eXercise itself).

A possible solution is to use a “probabilistic verification”

method as described next; nevertheless, we believe that this

problem requires further research, and it’s recently a hot

research topic in mathematics and cryptography [53], [5], [48].

4) Probabilistic verification: PoX verification is considered
the most challenging aspect due to the lack of a fast, e.g.,

O(n), and accurate formula, as SHA-256, that guarantees
the solution uniqueness (i.e., multiple inputs can return the

same output). The problem is that even if such a formula

exists, e.g., based on the matrix properties or structure, the

miner may find it easier to “guess” the values that satisfy the

formula, rather than solving the eXercise itself. This urged

finding probabilistic alternatives as in holographic proofs [4],
[53], [5], in which multivariate expressions are efficiently

expressed as univariate ones. In this scheme, a matrix problem

can be transformed into a probabilistic univariate polynomial,

making it hard (but possible) to construct the polynomial. To

make it even harder to guess, the authors in [5] proposed

inducing random fake numbers through an interactive protocol

to make sure that the eXercise was really solved using the

exact expected algorithm. Again, this unfortunately comes at

the price of additional wasteful work by the miner.

The most credible way to verify an eXercise, as in matrix

product, is to simply recompute the eXercise itself only a pre-

defined number of times (e.g., by solving the entire eXercise

again), and attach them as proofs within the same PoX.

This means that the eXercise shall not be verified forever,

as currently done in Bitcoin, which is also required due to

eXercise storage and availability reasons as described next.

(In principle, even in current Bitcoin PoW, it is unreasonable

to keep verifying the old PoWs over and over for the entire

blockchain; however, this is indistinguishable and cheap since

the PoW is simply the block header hash that is used to verify

the subsequence of blocks in the chain.) We believe that this

tradeoff is reasonable as long as the eXercise is sufficiently

verified. This verification scheme can be done by assigning

the same eXercise to several miners such that the first PoX is

empowered by the consecutive ones. For fairness and to avoid

collude, miners that solve the same eXercise must share the

rewarded Bitcoins (otherwise one miner may sell the solutions

to others).

Again, this may look impractical being costly, and since

the same work is being done several times, a bit controversial

to the idea of “rational” PoWs. A more viable solution is to

use a probabilistic verification method in which verifiers can

compute random parts of the matrix product. In particular, a

verifier can choose r < n random vector products Ai × Bj

to compute a single entry Aij , and check if these values

exist in the solution. Assuming that v random verifications

are required per eXercise, the fraction of verified entries

in the solution matrix AB is less than v×r
n2 (since different

verifications may overlap). If the r entries are completely
random, e.g., based on SHA-256(time) mod n2, and

different (for simplicity), the chance that the miner can fool a

single verifier is 1
n2r . Depending on whether verifiers chose

different entries or not, the chance that the miner can generate

a valid PoX is very low: between 1
n2r and

1
n2pr . As long as

the miner cannot tamper with his provided solution (ensured

by disclosing the corresponding hash digest beforehand), he

will simply refrain from cheating at a high risk of being

caught.

5) PoX commitments: The main target of a miner is to
commit a block and win the reward through the coinbase

transaction of a mined block [44]. However, the miner in

Bitcoin’s PoW can give up solving a specific puzzle (e.g., to

increase the number of transactions in a block) since this very

miner is the sole owner and creator of the puzzle. In contrast,

this is no longer true in the case of PoX since the employer

is basically interested in the solution of the eXercise itself,

correct and timely. Therefore, there should be a commitment

from the miner to solve the eXercise before a given time t
(sufficiently long, but not infinite), and importantly, make it

available and accessible, e.g., by storing it in a highly available

storage service (at some cost), and provide the needed access

details.

To guarantee this, the miner has to deposit a hostage credit,

e.g., a smart contract similar to Micropayment Channels or
Arbitrated Contracts [44], that can be claimed once the PoX
is verified before the deadline t, otherwise the deposit is lost.
The deposit amount (1) must be greater than the reward in the

coinbase and the storage cost to enforce the commitment, and

(2) must not be destined to a specific peer to avoid collude

(the employer and the miner can simply be the same entity).

Similarly, the miner needs to guarantee that during and after

solving the eXercise, the employer guarantees the availability

and accessibility to the eXercise, otherwise it may lose the

work done. For this reason, the employer also deposits a

hostage credit as above; but this time, with an amount greater

than the storage cost. Furthermore, verifiers must also commit

to store the verified instance values for further potential audit

in a similar way (see next section for details).

6) Shuffling eXercises: Once again, due to the dependency
of the eXercise and its solution, collude can easily occur

between the employer and the miner, or the miner and the

verifier. Consequently, the assignment of an eXercise must

be completely randomized and anonymous. To do this, a

hash digest of the eXercise (similarly, the solution, or the

verified instance) is shuffled before getting published for

miners’ “bidding”. Shuffling can be done via a shuffling

service that can be implemented as an onion routing [21]

service on Bitcoin’s network peers themselves, or using

an external service like TOR [16]. After that, the miner

or verifier commits (through the deposit transaction) to

a randomly chosen eXercise before it knows any details

about it or its owner. Once this information is unveiled, the

miner will no longer withdraw at the risk of losing his deposit.

7) Block-sensitive eXercises: Analogous to property P5 of
hash-based PoW, PoX must also be sensitive to a unique block,

i.e., a PoX shall not be used to commit two blocks. In the case

of hash-based PoW, this is not problematic since the puzzle’s

solution itself, i.e., the nonce, has no meaning beyond solving

the puzzle, and can thus be completely randomized to match

Bh. In contrast, the very solution of an eXercise in PoX is what

the employer really cares about. Consequently, the eXercise

cannot be simply modified to match the block via Bh. Instead,

this can be solved by tying the eXercise to a specific block

through imposing a random selection criteria based on the

block header. In particular, a miner that already computed a

hash of Bh, gets (randomly) assigned the unsolved eXercise

whose hash is “matching”. The matching criteria can be a

minimum number of consecutive matching characters, or a

hash with certain property similar to the notion of difficulty in
Bitcoin. To avoid matching — possibly many — old eXercise,

a time window for matching, based on the timestamp in the

block header, must be respected.

V. POX: ALL PUT TOGETHER

Now, we introduce a comprehensive solution for PoX, based

on the above discussion, and briefly shown in Fig. I.

1) Task proposals: Consider an employer E having a scien-
tific problem, a.k.a., an eXercise X, that requires computing

a matrix product. E stores X in a highly available database

XDB, and gets the corresponding credentials and hash digest

H(X). For simplicity, assume that XDB is an external paid

DB service. Then, E creates an eXercise Transaction XT that

comprises the PoX version, H(X), meta-data about X, e.g.,

“type:matrix product; Proof of Hardness: OK; dimension: 1

Billion, etc”. Then, it deposits a credit (in Bitcoins) for a

tolerated period of time after which E can give up (i.e., E is

only interested in the solution before that time expires). This

guarantees the availability and correctness of X, otherwise the

miner may lose (part of) his work. This credit may only be

claimed once the eXercise X is solved and verified or the

tolerated time has expired.

After that, E computes a hash digest H(XT) and submits it

to a shuffling service (discussed in Section IV) that shuffles

H(XT) several times to make it impossible to relate H(XT)

to E, and thus prevent collude. The shuffling service then

publishes SH(XT), i.e., the shuffled H(XT), to the eXercise

Board (XBoard). Only SH(XT)s that were published for a

predefined time (e.g., one day) may be selected by miners

to avoid forks in XBoard — which will require expensive

handling as in the blockchain — since delays are not critical

at this level.

2) eXercise bidding and mining: On the other side, a miner
M collects a set of (paid) transactions to be committed and

added to the blockchain. To do so, M needs to solve an

eXercise chosen from the XBoard and provide a corresponding

PoX. To prevent collude, M gets assigned an eXercise X in a

random way, e.g., through matching the hash of block header

H(Bh) to the eXercises in XBoard. (Matching can succeed

via a pre-defined size of a matching string, or using the hash

of H(Bh) and hash digests in XBoard in a similar scheme to

Bitcoin’s difficulty.)

At this stage, M promises to solve X in the eXercise

Transaction XT’ through creating a Deal Transaction (DT)

that contains: PoX version, SH(XT’), and H(Bh); and then

deposits a credit (in Bitcoin’s) for a defined period of time —

sufficiently long enough — to guarantee its commitment to

solve the assigned eXercise. In a similar way to the employer

E, the miner M can claim the credit in case the eXercise X

is incorrect or became unaccessible. Once the DT is issued,

the shuffling service uncovers the onion such that M and E

know each other. Consequently, E unveils the meta-data of

the eXercise in XT’ and gives the credentials of X in the

XDB to start working on it.

3) PoX Audit: Once the miner M finds Y’, i.e., the solution

of X, it follows the same process of the eXercise proposing

above, making it available for verifiers, called Auditors. In

particular, M stores Y’ in highly available store, e.g., XDB,

and gets a corresponding hash digest H(Y’) and access cre-

dentials; it creates a corresponding Verify eXercise Transaction

(VXT’) which is similar to XT, but without requiring a credit

this time since M has already deposited a credit through

Deal Transaction above. The auditor submits the VXT’ to

a shuffling service which publishes SH(VXT’) — a shuffled

version of VXT’ to be verified. Again, this is required to

remove any bias in verification.

Auditors follow the same bidding procedure as well to

choose a random solution Y” to verify, retrieve access details

from M and E after the SH(VXT’) onion is unshielded, and

start auditing Y” through the probabilistic verification scheme

— described in the previous section. If the verification

Passed, the auditor submits a Passed Report through creating
an Audit Transaction (AT) that includes the (random)

verification instance this auditor used for its report, otherwise
a Failed Report is submitted. The verification instance is

also stored in XDB, and is made available for future audits

(within a predefined time frame). Auditors have no interest

in submitting false reports since they are at the risk of being

caught by other honest auditors in case the same verification

instance is repeated. To the contrary, malicious auditors

may try submit Failed Reports to compromise the system.

This can be prevented by having auditors deposit a credit

as a guarantee against false reports — only in the case of

submitting Failed Reports.

4) Committing the block: Once M notices a pre-defined

number of Audit Transactions with Passed Reports, it collects

the references of all XT, DT, VXT, and AT transactions to-

gether with H(X) and H(Y’), and attaches them as a PoX to the

block header, that is confirmed by now and can thus safely be

added to the blockchain. Finally, all credit deposits are claimed

using the PoX of the confirmed block, and the stored data in

XDB can be removed. Recall that this verification scheme is

important to reduce the overhead of repeated verification of the

entire blockchain as well as the data storage and availability

costs — which are expensive in the case of PoX.

VI. RELATED WORK

Bitcoin was introduced by an anonymous author, called

Satoshi Nakamoto, as a fully functional Peer-to-Peer cryp-

tocurrency system [37]. The security, i.e., generation, transfer,

and maintenance of Bitcoins, is mainly guaranteed by a

tamper-proof public ledger called blockchain: the structure

where transactions are safely retained [44], [43]. To guard

against malicious behaviors, creating a block is made expen-

sive through solving a cryptographic puzzle: finding a nonce
that once hashed together with the block header returns an

integer having a leading number of zeros. Solving the puzzle

serves as a Proof of Work (PoW) asserting that this very
miner has done the hard job, and is thus worth some Bitcoins

from the system. PoW also imposes a maintained rate of

generating new blocks as an attempt to impose total order

across all system transactions (to prevent double spending).
The interesting properties of Bitcoin’s PoW are rarely studied

in a comprehensive way in literature. In this work, we show

that these properties are beyond what is usually mentioned in

literature.

Despite its nice properties, Bitcoin’s PoW is very energy

hungry, and it has been shown in [38], [14] that Bitcoin may

consume as energy as Ireland or Denmark. Consequently, there

are continuous attempts from researchers and practitioners to

provide more “useful” alternatives to PoW to justify the energy

consumed. Among the famous proposals is Proof of Stake [30]

(PoS) in which creating blocks is based on the coin age. The
proposal is often criticized being non-democratic solution —

biased to richer peers, and that coin age accumulates even

when the node is not connected to the network. Delegated

Proof-of-Stake (DPoS) [33] and Proof of Stake Velocity [45]

(PoSV) tried to solve the two issues independently without

solving the other, and with leaving new limitations. To the

contrary, Proof of Activity (PoA) [6] adopted a hybrid solution

of PoW and PoS to address both issues, however being using

PoW, the computation is still considered “wasted” on unless

nonce computation. Our work avoids these issues by sticking

to the nice properties of PoW, however, computing something

more valuable — like matrix-based scientific problems —

rather than a random nonce.

Similar to PoX, another class of proposals tried to replace

the “work” in Bitcoin by a more “useful” one that has some

other real use. In particular, Primecoin [29] suggested finding

prime numbers instead of finding the nonce. Although this

systems achieves similar properties to Bitcoin’s PoW, the

usefulness of finding prime numbers remains questionable.

Proof of Retrievability [35] is another suggestion where miners

provide a proof that they are investing on maintaining the

system through providing storage and memory resources.

Similarly, PieceWork [42] tried to outsource work like spam

deterrence and Denial of Service without showing how this is

done in detail. In all of these works, the work is limited to few

selected services, whereas PoX allows solving a wide range

of scientific problems.

The problem of finding proof of works has also attracted

other communities in industry and academia. Recently, Intel

introduced a CPU extension called Intel Software Guard

Extensions (Intel SGX) SDK that permits the execution of

trustworthy code in an isolated tamper-free environment [11].

This allowed to reduce the waste by computing real world

problems; however, it induced security threats through using

the partially-decentralized (Intel as authority) Proof of Elapsed

Time (PoET) model to force an idle elapsed time before

signing a block [56]. REM [56] addressed these security

challenges without providing a fully decentralized scheme.

Nevertheless, we believe that such hardware technology can

be exploited to improve the proof of work, e.g., to enforce the

use of a given algorithm, and to use more credible timestamps.

Theoreticians in the Computation Complexity area also

addressed the PoW problem since the nineteens [17], [47],

[18], [20], [53]. The closest work to PoX is Proofs of

Useful Work (uPoW) [5] in which the authors introduce a

“usefulness” property of a probabilistic PoW algorithm for

matrix-based problems (on Orthogonal Vectors). The authors

explicitly address blockchain in the last section, without going

deep into the technical design and integration challenges in

cryptocurrencies. Our work reveals that these challenges are

significant, and thus worth a dedicated research. Interestingly,

the uPoW work supports our idea that matrix-based problems

have a high potential to serve as PoWs, and it has a high

potential to fit in our PoX model.

Finally, ensuring the security of blockchain is also being

studied in academia, e.g., [9], [13], [32], [49], [46], following

Byzantine fault tolerant (BFT) approaches [10], [31], [22],

[27]. However, as shown in [49], BFT-based approaches are

not scalable to public settings as in cryptocurrencies, and are

thus only used in private blockchain.

VII. CONCLUSIONS

We introduced Proof of eXercise (PoX): a new proof of

work for cryptocurrencies, where the work is a real matrix-

based scientific computation problem. This work shows that

the inherit “magical” properties of Bitcoin’s hash-based PoW

(i.e., the puzzle), make it even more interesting than what is

documented in literature; and thus, we presented a compre-

hensive analysis to the propoerties of PoW. This was only

possible via thoroughly considering a real alternative problem

as eXercise.

As our work shows, the complexity of designing and

implementing PoX is much higher than PoW, and therefore,

as long as no cheaper alternatives that do not sacrifice the

genuine properties of PoW are proposed, it is wise to explore

the feasibility of PoX by studying individual scientific compu-

tation use-cases, and discussing potential extensions, e.g., as

those based on computational complexity [5]. Otherwise, one

may opt to stick to cheaper Proof of Stake [30], [33], [45], [6]

methods as long as the limitations and constrains are tolerated.

Finally, an empirical evaluation that compares the difficulty

levels of PoW versus PoX matrices (e.g., dimension, sparse-

ness, etc.) is an interesting future work.

REFERENCES

[1] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Con-
sequences of faster alignment of sequences. In International Colloquium
on Automata, Languages, and Programming, pages 39–51. Springer,
2014.

[2] Helmut Alt and Michael Godau. Computing the fréchet distance between
two polygonal curves. International Journal of Computational Geometry
& Applications, 5(01n02):75–91, 1995.

[3] Angel.co. Blockchains startups. https://angel.co/blockchains. Accessed:
2017-09-15.

[4] László Babai, Lance Fortnow, Leonid A Levin, and Mario Szegedy.
Checking computations in polylogarithmic time. In Proceedings of the
twenty-third annual ACM symposium on Theory of computing, pages
21–32. ACM, 1991.

[5] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasude-
van. Proofs of useful work. 2017.

[6] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof
of activity: Extending bitcoin’s proof of work via proof of stake
[extended abstract] y. ACM SIGMETRICS Performance Evaluation
Review, 42(3):34–37, 2014.

[7] Philip Bille. A survey on tree edit distance and related problems.
Theoretical computer science, 337(1):217–239, 2005.

[8] Vitalik Buterin. A next-generation smart contract and decentralized
application platform. white paper, 2014.

[9] Christian Cachin, Simon Schubert, and Marko Vukolic. Non-
determinism in byzantine fault-tolerant replication. In 20th Interna-
tional Conference on Principles of Distributed Systems, OPODIS 2016,
December 13-16, 2016, Madrid, Spain, pages 24:1–24:16, 2016.

[10] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems
(TOCS), 20(4):398–461, 2002.

[11] Intel Corporation. Intel software guard extensions (intel sgx) sdk. https:
//software.intel.com/en-us/sgx-sdk. Accessed: 2017-08-29.

[12] Pedro Costa, Marcelo Pasin, Alysson N Bessani, and Miguel Correia.
Byzantine fault-tolerant mapreduce: Faults are not just crashes. In
Cloud Computing Technology and Science (CloudCom), 2011 IEEE
Third International Conference on, pages 32–39. IEEE, 2011.

[13] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal.
(leader/randomization/signature)-free byzantine consensus for consor-
tium blockchains. CoRR, abs/1702.03068, 2017.

[14] Sebastiaan Deetman. Bitcoin Could Consume as Much Electricity as
Denmark by 2020. https://motherboard.vice.com/en us/article/aek3za/
bitcoin-could-consume-as-much-electricity-as-denmark-by-2020. Ac-
cessed: 2017-09-05.

[15] Michel Marie Deza and Elena Deza. Encyclopedia of distances. In
Encyclopedia of Distances, pages 1–583. Springer, 2009.

[16] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. Technical report, Naval Research Lab
Washington DC, 2004.

[17] Cynthia Dwork and Moni Naor. Pricing via processing or combatting
junk mail. In Annual International Cryptology Conference, pages 139–
147. Springer, 1992.

[18] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large
polynomials and matrix computations, with applications. In Proceedings
of the 2012 ACM conference on Computer and communications security,
pages 501–512. ACM, 2012.

[19] Anka Gajentaan and Mark H Overmars. On a class of o (n2) problems in
computational geometry. Computational geometry, 5(3):165–185, 1995.

[20] Jiawei Gao and Russell Impagliazzo. Orthogonal vectors is hard for
first-order properties on sparse graphs. In Electronic Colloquium on
Computational Complexity (ECCC), volume 23, page 53, 2016.

[21] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing.
Communications of the ACM, 42(2):39–41, 1999.

[22] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić.
The next 700 bft protocols. In Proceedings of the 5th European
conference on Computer systems, pages 363–376. ACM, 2010.

[23] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming.
Morgan Kaufmann, 2011.

[24] IBM. Hyperledger fabric. https://www.ibm.com/blockchain/hyperledger.
html. Accessed: 2017-09-15.

[25] COST: ”European Cooperation in Science and Technology” NESUS Ac-
tion IC1305. Network for sustainable ultrascale computing. http:
//www.nesus.eu/.

[26] Bitmain Technologies Inc. Antminer hardware. https://shop.bitmain.
com/main.htm?lang=en#spec-para. Accessed: 2017-09-15.

[27] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker. Making BFT
Protocols Really Adaptive. In In the Proceedings of the 29th IEEE
International Parallel & Distributed Processing Symposium, IPDPS’15.
IEEE-CS, May 2015.

[28] Maja Kabiljo and Aleksandar Ilic. Recommending items to more than
a billion people. https://code.facebook.com/posts/861999383875667/
recommending-items-to-more-than-a-billion-people/. Accessed: 2017-
08-29.

[29] Sunny King. Primecoin: Cryptocurrency with prime number proof-of-
work. July 7th, 2013.

[30] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, August, 19, 2012.

[31] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: speculative byzantine fault tolerance. In ACM
SIGOPS Operating Systems Review, volume 41, pages 45–58. ACM,
2007.

[32] Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall,
2014.

[33] Daniel Larimer. Delegated proof-of-stake (dpos). Bitshare whitepaper,
2014.

[34] Miles Lopes. Estimating unknown sparsity in compressed sensing. In
International Conference on Machine Learning, pages 217–225, 2013.

[35] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz.
Permacoin: Repurposing bitcoin work for data preservation. In Security
and Privacy (SP), 2014 IEEE Symposium on, pages 475–490. IEEE,
2014.

[36] Cleve Moler. The worlds largest matrix computation. The MathWorks,
Inc., 2002.

[37] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf.

[38] Karl J O’Dwyer and David Malone. Bitcoin mining and its energy
footprint. 2014.

[39] University of California. BOINC projects. http://boinc.berkeley.edu/
projects.php. Accessed: 2017-08-29.

[40] University of Zurich. The Center for Theoretical Astrophysics &
Cosmology Program. http://www.ctac.uzh.ch/research/index.html. Ac-
cessed: 2017-09-9.

[41] UNITED NATIONS:Framework Convention on Climate Change. Paris
climate change agreement. http://unfccc.int/paris agreement/items/9485.
php, October 2016.

[42] Ittay Eyal Philip Daian, Emin Gn Sirer and Ari Juels. Piecework:
Generalized outsourcing control for proofs of work. In BITCOIN
Workshop. Springer, 2017.

[43] Bitcoin Project. Bitcoin. https://bitcoin.org/.
[44] Bitcoin Project. Bitcoin documentation. https://bitcoin.org/en/

developer-reference. Accessed: 2017-08-29.
[45] Larry Ren. Proof of stake velocity: Building the social currency of the

digital age. 2014.
[46] João Sousa, Alysson Bessani, and Marko Vukolić. A byzantine fault-

tolerant ordering service for the hyperledger fabric blockchain platform.
arXiv preprint arXiv:1709.06921, 2017.

[47] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In
Advances in Cryptology–CRYPTO 2013, pages 71–89. Springer, 2013.

[48] Florian Tschorsch and Björn Scheuermann. Bitcoin and beyond: A tech-
nical survey on decentralized digital currencies. IEEE Communications
Surveys & Tutorials, 18(3):2084–2123, 2016.

[49] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-
work vs. bft replication. In International Workshop on Open Problems
in Network Security, pages 112–125. Springer, 2015.

[50] Bitcoin Wiki. Difficulty. https://en.bitcoin.it/wiki/Difficulty. Accessed:
2017-09-06.

[51] Bitcoin Wiki. Mining hardware comparison. https://en.bitcoin.it/wiki/
Mining hardware comparison. Accessed: 2017-09-06.

[52] Bitcoin Wiki. Sha-256. https://en.bitcoin.it/wiki/SHA-256. Accessed:
2017-09-06.

[53] Ryan Williams. Strong eth breaks with merlin and arthur: Short non-
interactive proofs of batch evaluation. arXiv preprint arXiv:1601.04743,
2016.

[54] Virginia Vassilevska Williams. Multiplying matrices in o (n2. 373) time.
preprint, 2014.

[55] Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM
Transactions on Algorithms (TALG), 1(1):2–13, 2005.

[56] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert van
Renesse. Rem: Resource-efficient mining for blockchains. In USENIX
Security Symposium. Springer, 2017.

[57] Albert Y Zomaya. Parallel computing for bioinformatics and com-
putational biology: models, enabling technologies, and case studies,
volume 55. John Wiley & Sons, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

