
Design of a Smart Contract Based Autonomous
Organization for Sustainable Software

Alper Alimoğlu and Can Özturan
Department of Computer Engineering

Bogazici University, Istanbul, Turkey

emails: {alper.alimoglu,ozturaca}@boun.edu.tr

Abstract—The emerging blockchain technologies have enabled
development of crypto-currencies and autonomous smart con-
tracts that can operate in decentralized and trustless settings.
Distributed autonomous organizations can be implemented using
smart contracts available on the Ethereum blockchain. In this
paper, we propose a distributed autonomous software organi-
zation model and its Ethereum smart contract implementation
called AutonomousSoftwareOrg for providing a continuously
operating virtual organization for software development commu-
nities and users. AutonomousSoftwareOrg facilitates a funding
mechanism based on crypto-currencies, a decision making mech-
anism based on voting and record keeping for software usage
citations and executions. AutonomousSoftwareOrg is deployed
and tested on our local Ethereum based blockchain system
(http://ebloc.cmpe.boun.edu.tr). Its Solidity language source code
is available at https://github.com/ebloc/AutonomousSoftwareOrg.

I. INTRODUCTION

The emerging blockchain technologies have applications in

many areas such as finance, governance, economy, citizen sci-

ence, E-science and Internet of Things. It was first developed

in order to implement the Bitcoin digital crypto-currency [1].

Later, with the introduction of Ethereum [2, 3], a virtual

machine that can run programs called smart contracts have

been provided. A blockchain platform runs continuously on

a peer-to-peer (P2P) network to which anyone can connect.

Blockchain keeps immutable records of transactions, acts as a

notary and pays incentives for running its software as a node.

Merkle [4] provides an informal list of the features of the

Bitcoin blockchain: (i) non-stoppable, (ii) non-interruptible,

(iii) acts as a notary, (iii) keeps public records, are some of

its important features.

For efficiency reasons, each block contains a number

(group) of transactions, a fingerprint (hash) of the previous

block which forms a hash link to the previous group and a

timestamp. Blocks and their hash linked structure form the

blockchain. Blocks are inserted to the main blockchain by

going through a consensus process. The process of creating

valid blocks is called mining. This requires demonstrating

proof of work. The miners are rewarded with crypto-currency

of the blockchain for performing this work. Blocks are mined

around every 10 minutes on average on the Bitcoin blockchain.

On Ethereum, block time has been averaging around 15

seconds [5].

In eScience, a new software development usually occurs

within the life cycle of a funded project. The software is

usually uploaded to a public code repository. During the

project duration, there are funded developers who maintain the

software. But once a project is over, and if the project team is

not granted a new follow-up project, maintenance and further

development of the software is at the mercy of volunteer

developers. There have been successful developer communities

that have been formed this way for some software. But there

is also a great risk that follow-up communities may not be

formed and all the effort that goes into development may be

wasted because there is no longer anyone to maintain and

further develop the software. This paper addresses mainly

this problem, i.e., can we develop a non-stoppable virtual

organization that will: (i) represent the software, (ii) continue

to exist even after the associated projects are over, (iii) provide

decision making, crowd funding and citation mechanisms to

its developers?
Before the emergence of blockchain and smart contract

technology, one approach for achieving software sustainability

would involve establishing a company and selling the software

or the support which would in turn provide funding for further

developments. This, however, requires a lot of capital and

bureaucratic work. This approach may work if a massive

market exists for the software. However, for open source and

free software developed by communities, establishment of a

company may not be a feasible approach. On the other hand, a

virtual organization that runs as a smart contract can be viable

alternative.
Smart contracts run exactly as programmed and au-

tonomously, hence they can be used to implement distributed

autonomous organizations (DAOs). This paper proposes block-

chain and smart contract based solutions on the following

topics about software sustainability:

1) Development and Community: A distributed autonomous

software organization model and its Ethereum smart

contract implementation is contributed for providing a

non-stop virtual organization for software community

with a funding mechanism based on crypto-currencies

and a decision making mechanism based on voting.

2) Professionalization: Since blockchains are open public

data; records of funding, membership in software orga-

nization, usages and citations of software by others are

kept in one place (blockchain) and updated continuously

(around every 15 seconds on average of block time

on Ethereum). Funding agencies and employers can

2017 IEEE 13th International Conference on eScience

978-1-5386-2686-3/17 $31.00 © 2017 IEEE

DOI 10.1109/eScience.2017.76

471

2017 IEEE 13th International Conference on eScience

978-1-5386-2686-3/17 $31.00 © 2017 IEEE

DOI 10.1109/eScience.2017.76

471

monitor the blockchain for impact, hence use this data

for giving incentives, promotions and grants. This in turn

leads to a higher quality sustainable software since the

efforts of developers are better assessed quantitatively

using the blockchain data.

3) Credit: In addition to providing a mechanism for receiv-

ing crypto-currency donations, citations by paper authors

as well as records of software usages by other softwares

can also be recorded on the blockchain. Hence, a novel

blockchain based new credit and citation ecosystem can

be implemented.

4) Software publishing: Blockchains are accessible by ev-

eryone operating an Ethereum node. Software related

activities such as formation of autonomous organiza-

tions, announcement of new versions, funding records,

citations and others can be recorded on the blockchain

and announced as events. If standardized smart contract

for softwares and interfaces are developed, then these

can help software discoverability and reuse.

5) Software reproducibility: Conferences, journals and

funding agencies can require software execution records

to be stored on the blockchain. Hashes of inputs and

outputs can be recorded on the blockchain. Since block-

chain is immutable and can act as a notary, these records

are in some way declarations by the software executers

that given the specific input, the corresponding output

should be reproduced.

In the rest of the paper, we first present an overview of

the related work in Section II. Blockchain based autonomous

software organization model is covered in Section III. Details

of the smart contract that implements the software organi-

zation model are given in IV. Demonstration of the smart

contract on our local Ethereum based blockchain system

(http://ebloc.cmpe.boun.edu.tr) is presented in Section V. Fi-

nally, the paper is concluded with a discussion and future work

in Section VI.

II. PREVIOUS WORK

Crowdsourced development efforts are becoming very im-

portant and are leading to development of various successful

platforms such as OpenStreetMap, Instagram, Weather Under-

ground and Kickstarter. Software development and documen-

tation [6] are also being outsourced to communities. A survey

of the use of crowdsourcing in software engineering is given

in [7]. Blockchain technologies are the new trend in obtaining

crowdfunding for new projects. Whereas earlier crowdsourcing

and funding efforts have been based on centralized services,

the newly emerging Blockchain technologies that operate in

decentralized and trustless manner enable crypto-currencies

to be used for crowdfunding. Under the name Initial Coin

Offering (ICO) that replaces the traditional Initial Public

Offering (IPO), companies can use smart contracts on the

Ethereum blockchain to collect funding from crowds.

The first Distributed Autonomous Organization on the

Ethereum platform called The DAO was deployed in Spring

2016 [8]. During its ICO, millions of dollars worth of Ether

were collected. Unfortunately, due to a recursive Ethereum

send exploit, a hacker drained millions of dollars worth of

Ether from the contract [9]. The DAO hack taught a important

lesson about storage of value and doing transactions on

blockchains and that is, what we should be very careful about

correctness of the smart contracts deployed on the blockchain.

We should verify their correctness and test them thoroughly.

The DAO smart contract implemented a virtual organization

with rules to coordinate decision making by voting of the

investors. Project proposals could be made by the investors

and their funding could be decided by voting.

Autonomous Software Organization (called

AutonomousSo f twareOrg) that we implement in this

paper is similar to The DAO in spirit but is much simpler

and is meant for small software development communities.

AutonomousSoftwareOrg also provides a mechanism to

collect funds and select and fund software development

proposals. The importance of distributed collaboration and

doing science on the Internet has been noted by [10].

AutonomousSoftwareOrg have the potential to facilitate

sustainable collaborations for software development since

it will present a living, non-stoppable, non-interruptible

contract that provides fund collection and delivery as

well as a democratic mechanism for decision making by

members. Since software can be characterized as being a

hidden infrastructure behind the world’s largest scientific

facilities [11], a smart contract running continuously on a

blockchain can be the autonomous entity that represents the

software infrastructure.

The topics of software citation for credit, identification,

discovery, and reuse has also gained importance recently [12].

Our AutonomousSoftwareOrg smart contract provides func-

tions to record citations, usages and software executions on

the blockchain. If different entities such as funding agencies,

users, researchers, evaluators, companies are represented as

addresses on the Ethereum blockchain, then our Autonomous-

SoftwareOrg can receive citations and usage links from them

and record them as transactions on the public blockchain.

Hence, continuously updated rich linkage information among

various entities shown in Figure 1 can be made publicly

available on the blockchain.

When a function of a smart contract is invoked, each one

of the thousands of nodes in the P2P network that executes

the body of the function and then later participates in the

consensus process. Hence, if massive number of users all

of the world are to use the Ethereum blockchain, scalability

problem needs to be resolved. This issue has been raised

in [13, 14] and solution proposals discussing the use of sharded

blockchains are available [15]. We note that even though in the

world of finance, massive number of transactions may occur

every second. It is critical that these are recorded in a timely

manner on the blockchain. This is not, however, the case for

our AutonomousSoftwareOrg. Activities such as becoming a

member, donation, voting and citation that will be supported

by AutonomousSoftwareOrg do not happen frequently, i.e.

large intervals of time elapse between such activities. Hence,

472472

Fig. 1. Interactions of various entities

if any transaction associated with such activities gets delayed

in getting into a confirmed block, it will not cause critical

problems.

III. BLOCKCHAIN BASED AUTONOMOUS ORGANIZATION

MODEL

Distributed Autonomous Software Organization that has

been designed in this paper aims to provide a virtual or-

ganization for the developers of a software, allows them

to collect funding for the development of the software and

makes decisions by a voting process. Decisions are taken

by at least M/N majority rule which is configured when

the virtual organization is first created. At least M/N of the

members of the organization must vote affirmatively in order

for a decision to pass. Figure 2 depicts the design of our

autonomous organization. Our system consists of four main

entities:

1) Users: use the software developed by the autonomous

organization. If a user likes the software, he can invoke

Donate() function to donate money to the organization.

Companies can also use Donate() to provide monetary

grants to the software developers. If a user is a researcher

who publishes in journals or conferences, he can cite the

software by calling the Cite() function and providing the

doi number of the publication. If the user is a developer

of another software which is managed by another smart

contract, he can call UsedBySo f tware() to record the

address of the smart contract for the other software.

UsedBySo f tware() is similar to Cite() but it forms

a linkage between two software using smart contracts

whereas Cite() forms linkage between a publication

and the software using smart contract. Users can also

use addSo f twareExecRecord() function to record and

notarize hashes of input and output files. This can be

useful for reproducibility checks.

2) Software Developers: are the candidates who want to

contribute development efforts to the software within

the organization. The smart contract for the soft-

ware organization is first created (deployed) by a

Fig. 2. Blockchain based autonomous organization model

single developer who calls the constructor function

AutonomousSo f twareOrg(). This person (who deploys

the contract) becomes the first member of the organiza-

tion. The candidates express their candidacy by calling

the BecomeMemberCandidate() function and provide

information about themselves. The subsequent members

are determined by a voting process carried out by

existing members.

3) Members of the Software Organization: are the software

developers who are officially affiliated with the software

organization and who have voting rights. They are able

to propose development proposals and ask for funding

from the organization by calling the ProposeProposal().
If there are software developer candidates, they can

also call the VoteCandidateMember() to vote for can-

didates to make them a member. They can call the

DelVoteCandidateMember() to delete their vote for a

candidate or a member. If voting majority is reached,

a candidate becomes a member. If voting majority is

lost, a member loses his membership. Members use

voting to get funding for software development pro-

posal. They vote using the VoteForProposal() func-

tion. If voting majority is reached for a proposal,

the proposer member can withdraw funding by calling

WithdrawProposalFund().
4) AutonomousSoftwareOrg Smart Contract: is available

on the Ethereum blockchain network and works au-

tonomously when its functions are invoked. It is im-

plemented as Solidity Language code and contains the

operation rules of the software organization. It has the

rules for majority voting decisions for membership and

proposal funding. It also has various getter and event

functions that provide information about the number of

votes, proposals and members.

IV. SMART CONTRACT DETAILS

Figure 3 shows the signatures of the functions available

in the AutonomousSoftwareOrg smart contract. Solidity lan-

guage [16] is used to code the smart contract. Solidity lan-

guage provides conditional modifiers that can apply to function

bodies. We make use of Condition Oriented Programming

(COP) style proposed by [17]. Function bodies are executed

473473

when the conditional modifiers are true. The descriptions of

conditional modifiers are given in Table I. The full source code

of the AutonomousSoftwareOrg smart contract is available at

https://github.com/ebloc/AutonomousSoftwareOrg.

We note that, in addition to the contract functions shown

in Figure 2, getter functions (functions that return the values

of various variables) are provided. These getter functions are

defined as constant functions.

In the AutonomousSoftwareOrg contract, events are also

defined and emitted when transactions such as proposal sub-

missions or voting are performed. Events can be watched by

anyone who runs an Ethereum client such as Geth or Parity.

TABLE I
CONDITIONAL MODIFIERS IN THE SMART CONTRACT

Modifier Condition
enough_fund_balance(propno) there is enough balance to pay

for proposal propno funding
valid_proposal_no(propno) propno is a valid proposal

number
member(addr) addr is the Ethereum block-

chain address of a member
not_member(addr) addr is not the Ethereum

blockchain address of a mem-
ber

valid_member_no(memberno) memberno is a valid mem-
ber/candidate number

valid_deadline(deadline) deadline is a valid block num-
ber

within_deadline(propno) deadline for proposal propno
has not passed

not_voted_for_proposal(propno) function invoker did not vote
for proposal propno

not_voted_for_member(memberno) function invoker did not vote
for member with memberno

voted_for_member(memberno) function invoker did not vote
for member with memberno

proposal_owner(propno) function invoker is the owner
of proposal propno

proposal_majority(propno) at least M/N of the mem-
bers voted affirmatively for
the proposal propno

membership_majority(memberno) at least M/N of the mem-
bers voted affirmatively about
membership of memberno

nonzero_payment_made() non-zero payment is also sent
to the contract when the func-
tion is invoked

Ethereum operates in “pay to play” manner. When calling

contract functions, ether money (called gas) is charged in

order to execute the instructions of the functions. The unit of

currency Ether on the Ethereum blockchain also has smaller

denominations. For example, 1 Ether is 1018 Wei. When a

contract function is called, the global variable msg.sender con-

tains the address of the caller. The global variable msg.value
contains the amount of payment received together with the

contract call. Note that in order for a contract function to

be able to receive payment, it should be declared as payable
function. As time units, we avoid using timestamps on the

blockchain since these may be inaccurate. Instead, we use

block numbers for setting and checking deadlines. Constant

functions do not modify smart contract state variables; they

Contract AutonomousSoftwareOrg {

.... // Variable definitions

.... // Event definitions

.... // Conditional modifier definitions

function AutonomousSoftwareOrg(bytes32 name,uint8 M,
uint8 N, bytes32 url)

function ProposeProposal(bytes32 title,bytes32 url,
uint256 prophash,uint requestedfund, uint deadline)
public member(msg.sender) valid_deadline(deadline)

function VoteForProposal(uint propno) public
valid_proposal_no(propno) within_deadline(propno)
member(msg.sender) not_voted_for_proposal(propno)

function WithdrawProposalFund(uint propno) public
valid_proposal_no(propno) within_deadline(propno)
member(msg.sender) enough_fund_balance(propno)
proposal_owner(propno) proposal_majority(propno)

function BecomeMemberCandidate(bytes32 url) public
not_member(msg.sender)

function VoteMemberCandidate(uint memberno) public
valid_member_no(memberno) member(msg.sender)
not_voted_for_member(memberno)

function DelVoteMemberCandidate(uint memberno) public
valid_member_no(memberno) member(msg.sender)
voted_for_member(memberno)

function Donate() payable public nonzero_payment_made

function Cite(bytes32 doinumber) public

function UsedBySoftware(address addr) public

function addSoftwareExecRecord(bytes32 softwareversion,
bytes32 url,uint256 inputhash,uint256 outputhash)

function addSoftwareVersionRecord(bytes32 url,
bytes32 version,uint256 sourcehash)

function getAutonomousSoftwareOrgInfo()
constant returns (bytes32,uint,uint,uint,uint)

function getMemberInfoLength() constant returns (uint)

function getMemberInfo(uint memberno)
member(membersinfo[memberno-1].memberaddr)
constant returns (bytes32,address,uint)

function getProposalsLength() constant returns (uint)

function getProposal(uint propno) constant
returns (bytes32,bytes32,uint256,uint,uint,bool,uint)

function getDonationInfo(uint donationno) constant
returns (address,uint,uint)

function getCitation(uint citeno) constant
returns (bytes32)

function getUsedBySoftware(uint usedbysoftwareno)
constant returns (address)

function getSoftwareExecRecord(uint32 id) constant
returns(address,bytes32,bytes32,uint256,uint256)

function getSoftwareVersionRecords(uint32 id)
constant returns(address,bytes32,bytes32,uint256)

... // the remaining getter functions
}

Fig. 3. AutonomousSoftwareOrg smart contract function signatures

474474

just read values. Since, they are not transactions, they incur

no gas cost.

V. TESTS

AutonomousSoftwareOrg is tested by deploying it

on our Ethereum based local blockchain network

(http://ebloc.cmpe.boun.edu.tr) that has been operational

since October 2016. The gas cost of AutonomousSoftwareOrg

smart contract deployment was 2235815 Wei. Anyone can

use the eBloc platform by following the instructions at

https://github.com/ebloc/eBloc. Figure 4 shows the screen

dump of eBlocXplore tool that reports the transactions while

testing AutonomousSoftwareOrg.

The gas spent for each smart contract function execu-

tions are given in Table II. These values are obtained from

transaction receipts by calling getTransactionReceipt(txid) in

Ethereum clients Geth or Parity.

TABLE II
GAS CONSUMPTION OF SMART CONTRACT FUNCTIONS.

Method Used Gas(wei)
ProposeProposal() 146086
VoteForProposal() 62997
WithdrawProposalFund() 41286
BecomeMemberCandidate() 77834
VoteMemberCandidate() 89504
DelVoteMemberCandidate() 22409
Donate() 90000
Cite() 47268
UsedBySoftware() 63546
addSoftwareExecRecord() 85078
addSoftwareVersionRecord() 80003

Our test scenario is as follows: The contract is deployed by

one developer, who registers ten candidate members into Au-

tonomousSoftwareOrg smart contract using the BecomeMem-

berCandidate() function. Then, the deployer of the contract

uses VoteMemberCandidate() to vote for one randomly se-

lected new candidate, who become a valid member. Later,

valid members repeat this process for candidate members until

all candidates become valid members. Multiple users donate

some ether into AutonomousSoftwareOrg smart contract using

the Donate() function. Two donation transactions of 10 ether

values are shown in Fig 4. A randomly selected member

proposes a proposal using the ProposeProposal() requesting

10 ethers for funding and setting a deadline. Members use

VoteForProposal() to vote for the proposal until the required

majority is reached. Voting for proposal can be watched by

using LogProposalVote() event function. After the deadline

passes the current block number, proposal proposer withdraws

his requested fund using the WithdrawProposalFund() func-

tion.

VI. DISCUSSION AND CONCLUSION

If an autonomous software organization like the Au-

tonomousSoftwareOrg proposed in this paper is deployed on

the Ethereum blockchain, the software can then become a

living entity represented by its deployed non-stoppable smart

Fig. 4. Screen dump of eBlocXplore tool that reports the transactions while
testing AutonomousSoftwareOrg

contract. What is more, it can collect funds and distribute funds

to existing as well as new developers who become members of

the autonomous software organization. This can then help the

software to sustain itself. AutonomousSoftwareOrg can also

record usage citations and execution records of the software

which can form a valuable data that can be analyzed for

software impact assessment. The fact that this data is replicated

on thousands of blockchain P2P nodes further guarantees that

the data is widely available, is notarized and continuously

updated. All of these capabilities are not available in centrally

managed services.

A web interface using web3.js library will be available

in future versions of AutonomousSoftwareOrg. The topic of

setting up software seal of approvals and software assess-

ment frameworks are also becoming important [18]. In future

AutonomousSoftwareOrg versions, we will provide functions

that will record seal of approvals and results of assessment

frameworks.

ACKNOWLEDGEMENT

This work is supported by the Turkish Ministry of Devel-

opment under the TAM Project number DPT2007K120610.

REFERENCES

[1] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf.

[2] Ethereum project. https://www.ethereum.org/.
[3] G. Wood. Ethereum: a secure decentralised generalised transaction

ledger, homestead revision. http://gavwood.com/paper.pdf.
[4] R. Merkle, “Daos, democracy and governance,alcor, www.alcor.org,”

vol. 37:4, pp. 28–40, 2016, http://merkle.com/papers/
DAOdemocracyDraft.pdf.

[5] Ethereum block time history. https://etherscan.io/chart/blocktime.
[6] A. Pawlik, J. Segal, H. Sharp, and M. Petre, “Crowdsourcing scientific

software documentation: a case study of the numpy documentation
project,” Computing in Science & Engineering, vol. 17, no. 1, pp. 28–36,
2015.

[7] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use
of crowdsourcing in software engineering,” Journal of Systems and
Software, vol. 126, pp. 57–84, 2017.

475475

[8] C. Jentzsch. (2016) Decentralized autonomous organization to automate
governance. Https://download.slock.it/public/DAO/WhitePaper.pdf.

[9] P. Daian. (2016) Analysis of the dao exploit.
Http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/.

[10] R. T. Kouzes, J. D. Myers, and W. A. Wulf, “Collaboratories: Doing
science on the internet,” Computer, vol. 29, no. 8, pp. 40–46, 1996.

[11] N. Chue Hong, “Software: the hidden infrastructure behind the world’s
largest scientific facilities,” Innovation Into Success - The Quarterly
Journal of UKSPA, vol. 31, pp. 28–29, 1 2013.

[12] K. E. Niemeyer, A. M. Smith, and D. S. Katz, “The challenge and
promise of software citation for credit, identification, discovery, and
reuse,” ACM Journal of Data and Information Quality (JDIQ), vol. 7,
no. 4, p. 16, 2016.

[13] Eip 105 (serenity): Binary sharding plus contract calling semantics 53.
https://github.com/ethereum/EIPs/issues/53.

[14] Horizontal scalability/sharding 142. https://github.com/EOSIO/eos/
issues/142.

[15] On sharding blockchains. https://github.com/ethereum/wiki/wiki/
Sharding-FAQ.

[16] Solidity. http://solidity.readthedocs.io/en/latest/.
[17] G. Wood. Condition oriented programming. https://blog.ethcore.io/

condition-oriented-programming-2/.
[18] N. Chue Hong, “Setting up a software seal of approval,” 3

2017, https://figshare.com/articles/Setting-up-a-Software-Seal-of-
Approval/4737178/1.

476476

