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Abstract—Recent advances in chip design and integration technologies have led to the development of Single-Chip Cloud computers

which are a microcosm of cloud datacenters. Those computers are based on Network-on-Chip (NoC) architectures with deep memory

hierarchies. Developing scheduling algorithms to reduce data access latency as well as energy consumption is a major challenge for

such architectures. In this paper, we propose a set of algorithms to jointly address the problem of task scheduling and data allocation in

a unified approach. Moreover, we present a feasible system model for NoC based multicores considering a three-level memory

hierarchy that effectively captures the energy consumed by various elements of system including: processing cores, caches, and NoC

subsystem. Simulation results show the superiority of proposed algorithms compared to two state-of-the-art algorithms found in the

literature. The experimental results clearly indicate that algorithms performing data and task scheduling in a joint fashion are superior

against techniques implementing task and data scheduling separately.

Index Terms—Task Scheduling, data scheduling, network-on-chip, single chip cloud computers
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1 INTRODUCTION

WHILE the advancement in integration technologies has
led to significant increase in transistor count and pro-

cessor execution frequency, memory access speed has failed
to keep up the pace with the processor speed [1]. As a result,
more than one level of cache hierarchies has been introduced
to span the growing speed gap between processor andmem-
ory [2]. Unfortunately, because the transistor-speed scaling
pace is already diminishing [3], frequency of operations will
increase slowly with energy the key limiter of performance
[2]. The above has driven to large-scale parallelism, integrat-
ing multiple processors within a network on chip to achieve
performance and energy efficiency. For instance, current
servers in cloud computing environments are composed of
many cores with deep memory hierarchies that are based on
Network on Chip (NoC) architectures [4]. The aforemen-
tioned servers are called Single-Chip Cloud Computers.

Such designs have been influenced by many factors, with
energy playing a defining role. Even though the processor
energy consumption has reduced considerably over the last
few years, the same is untrue for memory modules, whose
improvements in energy consumption have not kept pace
with the increasing demand for capacity [5].

Multitier memory architectures [6], [7] have been intro-
duced to tackle the problem of energy disproportionally [8],
[9]. Modern computing systems feature deep memory hierar-
chies with multiple homogeneous or heterogeneous comput-
ing units (microprocessors or cores) [10]. The key performance
characteristic of a cache is the average memory access time
(AMAT). By increasing the total capacity of the cache, we
observe an increase in AMAT [10]. However, the energy con-
sumption of the cache increases drastically. Conversely,
increasing the depth of the cache improves AMAT only when
the data is larger than the intermediate level caches.

In this paper we tackle the problem of scheduling interde-
pendent tasks as well as their intermediate data within a sys-
tem of deep memory hierarchies such that to optimize
performance and energy consumption. Intermediate data
items generated during the task execution can be placed at
different levels of cache memory having significant heteroge-
neity inmemory access latency and energy consumption [11].
The heterogeneity in task execution renders task scheduling
an NP-hard problem [12]. Heterogeneity in data access makes
the problemmore complicated and challenging to be tackled.

Major contributions of this paper are summarized as
follows.

� The novelty of this paper is that it considers the
problem of task scheduling and data allocation in a

� T. Maqsood and S. A. Madani are with COMSATS Institute of Informa-
tion Technology, Abbottabad, Islamabad 45550, Pakistan.
E-mail: {tmaqsood, madani}@ciit.net.pk.

� N. Tziritas and C.-Z. Xu is with the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518172, China.
E-mail: {nikolaos, cz.xu}@siat.ac.cn.

� T. Loukopoulos is with the University of Thessaly, Lamia, Volos 382 21,
Greece. E-mail: nikolaos@siat.ac.cn.

� S. U. Khan is with the North Dakota State University, Fargo, ND 58105.
E-mail: samee.khan@ndsu.edu.

Manuscript received 14 July 2016; revised 1 Feb. 2017; accepted 17 Apr. 2017.
Date of publication 19 May 2017; date of current version 13 July 2017.
(Corresponding author: Nikos Tziritas.)
Recommended for acceptance byC.Dobre, G.Mastorakis, C. X.Mavromoustakis,
and F. Shafa.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSUSC.2017.2706620

154 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2017

2377-3782� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



unified approach to optimize performance and
energy consumption in systems with deep memory
hierarchies.

� Propose efficient heuristics to solve the problem of
task scheduling and data allocation in a unified
manner.

� We conduct experiments clearly showing the superi-
ority of our proposed algorithms against state-of-the
art algorithms found in the literature.

The remainder of this paper is organized as follows.
Related work is introduced in Section 2. Problem formulation
and system model are discussed in Section 3. Section 4
presents the proposed heuristics. Complexity analysis of pro-
posed heuristics is provided in Section 5. Experimental evalu-
ation and results are discussed in Section 6. Lastly, Section 7
concludes the paperwith an overview of futurework.

2 RELATED WORK

Unfortunately, the problem of jointly scheduling task and
data in systems with deep memory hierarchies has not
received much attention. Therefore, in this section we dis-
cuss works that are closely related to the problem addressed
in this paper.

We first discuss about works revolving around novel
memory architectures and data allocation techniques. For
instance, in [13] a data allocation heuristic is proposed for a
hybrid SPM architecture. The proposed hybrid SPM archi-
tecture combines the static random access memory (SRAM)
with nonvolatile memory (NVM). The proposed heuristic
attempts to place data in such a manner that data items
with high number of write operations are placed in SRAM
while the data items having high read operations are placed
in NVM. The objective of the proposed heuristic is to
achieve lower latency and low energy consumption with an
increased lifetime of the underlying embedded system.
Another hybrid architecture employing both cache and
SPM as an on-chip memory is proposed by authors in [14].
Similarly, authors in [15] propose data allocation algorithms
for SPM-equipped multicore architectures. The proposed
regional data allocation algorithms significantly reduce data
access latency compared to a greedy algorithm. The afore-
mentioned approaches are orthogonal to our work.

Next we discuss works that consider task and data sched-
uling in a joint manner but their systemmodel as well as their
application models are different against this paper. For
instance, authors in [16] proposed an adaptive cache-aware
bitier work stealing algorithm, termed as A-CAB, for multi-
socket multicore architectures. The A-CAB algorithm
attempts to schedule tasks with data dependencies to the
same socket because all the coreswithin the same socket share
the last level cache leading to significant reduction in cache
misses and improve system performance. A-CAB algorithm
has two main components: (a) a DAG partitioner and (b)
work stealing based scheduler. The partitioner splits the DAG
into intersocket and intrasocket tiers. Afterwards, the tasks
belonging to intersocket tier are scheduled across socketwhile
the tasks in the intrasocket tier are scheduled within a given
single socket. However, while partitioning the task execution
DAG, A-CAB only considers the amount of data that can be
accommodated in shared cache and does not take into

consideration the private cache capacity available for storing
data. Another drawback of the proposed scheme is that cores
within the same socket are not permitted to steal the tasks
from other intrasocket trees even if some of the cores remain
underutilized. Moreover, authors in [16] targeted a multi-
socket multicore architecture whereas the focus of this work
is a system on chip (SoC) multicore architecture. In [17],
authors presented an ILP formulation and a heuristic for co-
optimization of task scheduling and memory access in
MPSoCwith two-level memory hierarchy. The proposed heu-
ristic schedules tasks by taking into account future memory
access time. Task whose page(s) are accessed earlier by other
tasks is given more priority for scheduling. However, in con-
trast to the architecture model adopted in this work, authors
considered only two level memory hierarchies (L1 cache and
main memory). Moreover, [17] considers only the number of
time steps in future that a page is accessed without consider-
ing the frequency of page accesses which may have a signifi-
cant impact on performance. [17] schedules tasks considering
memorypages accessed by the task at hand.Ourwork consid-
ers task scheduling and placement of data generated during
execution in a unified approach. In [18], authors present an
ILP formulation integrating the process of task mapping, task
scheduling, scratchpadmemory partitioning, and data alloca-
tion. However, a major drawback of the ILP solution is their
inapplicability to large problem instances. Moreover, in con-
trast to the multi-level cache memory model adopted in our
work, the authors have considered the SPM based model for
bus based MPSoCs. Whereas, in this work, we propose task
scheduling and data allocation heuristics for NoC based mul-
ticore processor systemswith deepmemory hierarchies.

Last we discuss theworks that are closest to ourwork. Spe-
cifically, in [11], authors present an integer linear program-
ming (ILP) method to solve the problem of task scheduling
and data allocation in heterogeneousmultiprocessor systems.
In addition to the ILP method, authors proposed two heuris-
tics to solve the aforementioned problem. Authors proposed
task assignment considering data allocation (TAC-DA) and
task ratio greedy scheduling (TRGS) heuristics. The target of
the paper is to reduce the system energy consumption consid-
ering the task/workflow deadlines. Their results reveal supe-
riority of proposed techniques compared to a Greedy
algorithm [19]. However, unlike our work, authors do not
exploit the multiple levels of cache hierarchy. In [20],
authors propose heuristics to address data allocation on
embedded systems equipped with multiple types of mem-
ories. Authors advocate the use of scratchpad memory
(SPM) in replacement of cache memory due to lower die
area and lower energy consumption compared to cache.
Authors presented two data allocation heuristics termed as
regional optimal data allocation (RODA) and global data
allocation (GDA). RODA finds optimal data allocation for
a given program region but does not consider the impact
of current data allocation on subsequent program regions.
GDA algorithm finds all optimal solutions for a given pro-
gram region. A major drawback of the proposed technique
is that it considers data allocation and task scheduling sep-
arately. On the other extreme, our work performs data allo-
cation and task scheduling in a unified approach.

The closest work to us is that of [11], which considers a
system with only one level of memory. To the best of
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our knowledge, there is no work that considers task and
data scheduling in a joint manner for systems with deep
memory hierarchies.

3 SYSTEM MODEL AND PROBLEM FORMULATION

To proceedwith the formulation of the problem addressed in
this paper, we first need tomake the following definitions.

Directed Acyclic Graph (DAG) based workflows have
been extensively used in large-scale compute and data
intensive scientific applications, such as medical image
processing, high-energy physics, astronomy, geophysics,
and bioinformatics [21]. In this work we have adopted the
DAG based workflow model. Components of task and data
DAG are presented below.

Definition 1. Task-DAG.

A task graph is a directed acyclic graph defined as task-
DAG. A task-DAG consists of T tasks with their dependen-
cies being captured by a set of edges denoted by E. Each
node in task-DAG represents a task ti 2 T, while each edge
ejk 2 E connecting two tasks tj and tk represents the interde-
pendence among the tasks. The weight of an edge ejk is
denoted by wjk and it indicates the volume of data needed
to be exchanged between tj and tk. The computational
requirements of a task ti is represented by r(ti).

Definition 2. Data-DAG.

During the execution of task-DAG, each task generates
certain data items that are used by the tasks that are depen-
dent on the respective task. Therefore, the intermediate data
segments are also precedent constrained and can be repre-
sented by a DAG termed as data-DAG. Each node in the
data-DAG dkn represents the n-th intermediate data segment
generated by some task tk. The size of data segment dkn is
captured by SðdknÞ. An edge from (dkn) to (dxn) indicates the
precedence constraint. Note that we will employ the term
dn instead of dkn whenever it is not necessary to mention the
task id related to the respective data segment. In both task-
DAG and data-DAG, nodes without predecessors are the
entry nodes, while the nodes without successors are the exit
nodes. There can be multiple entry and exit nodes in both
task-DAG and data-DAG.

Definition 3. System Architecture.

The proposed system model is a network-on-chip (NoC)
based multicore architecture. The NoC model used here is
similar to the model originally proposed in [22]. The set
P ¼ p1; . . . ; pn consists of a number of heterogeneous proc-
essing elements (PEs) or processing cores. The computa-
tional capacity of each processing core pj 2 P is denoted by
lj. The computational capacity �j of pj is measured in mil-
lions of instructions per second (MIPS). Each pj 2 P has
access to a number of memories of different levels, M ¼
mj1; mj2; . . . ; mjz. Here mj1 represents the lowest level
memory (level-1 cache of pj), while mjz represents the high-
est level memory (main memory controller of pj). S(mjz) cap-
tures the storage capacity of mjz. Each core is connected to
the mesh based NoC through a router. NoC provides a scal-
able and modular architecture whereby cores are intercon-
nected through a router-based architecture.

Definition 4. Task and Data Mapping.

Let matrix F of size jT j � jP j encode the task to core map-
ping, with fij equaling 1 when ti is hosted by pj, otherwise
equaling 0. Note that jT j and jP j represent the number of
tasks and number of processing cores, respectively. It must
also be noted that fðiÞ represents the PE executing ti. Data
assignment onto memories is represented by a matrix Q of
size jDj � jP j � jMj, with qnjz equaling 1 when data segment
dn is hosted by mjz, otherwise equaling 0. Note that jD j
and jM j define the number of data segments and the set of
memories, respectively. Note that qði;mÞ captures the mem-
ory id hosting the data exchanged between ti and tm.

Definition 5. Memory Architecture.

Fig. 1 presents the multi-tier memory architecture of our
model. Specifically, each processing core is equipped with
an L1 cache, which has also access to a private L2 cache.
Moreover, in the proposed architecture a processing core
can access through an interconnection network a pool of
distributed shared L3 caches and memory [23], [24], [11].
The number and placement of shared cache banks is pre-
defined based on the NoC size. NoC architecture is shown
in Fig. 2, where each node represents a tile in NoC. As we
can see a tile consists of (a) a processing element; (b) three
caches (L1, L2, and L3); (c) a memory controller (d) as well
as a router to route data between different tiles. Each PE has
access to its private caches as well as to distributed caches
and memory controllers of other PEs, thereby allowing a PE
to read or write directly to/from the cache/memory of
remote PEs [11]. Table 1 presents the latency incurred for a
PE to access data from its local caches as well as the corre-
sponding energy consumption.

Fig. 1. Multi-tier memory architecture.

Fig. 2. NoC architecture.
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The memory model used in this work is motivated by the
alternate cache organization architectures proposed by Intel
[25]. Similar architecture has been implemented by Intel
Xeon E7 v4 family processors where each core has a private
L1 and L2 cache. Regarding L3, distributed blocks are
shared among all 24 cores. Similar architecture is used in
IBM Power8TM [26] and Tilera [27].

Definition 6. Remote Memory Access Latency.

The communication among PEs is carried out by reading
or writing data to/from shared caches or distributed mem-
ory. Remote cache/memory access latency largely depends
on the number of links or hops between source and target
PEs. The access latency for reading/writing a unit of data
from remote processing core can be calculated using

RALk
jx ¼ MDjk � LLþ ALjx: (1)

WhereMDjk represents the number of hops calculated by the
minimum Manhattan distance between pj and pk. LL denotes
the link latency in terms of number of cycles required for a
data unit to traverse a hop including NoC link and router
delay. ALjx represents the local access latency for reading/
writing a data unit from/tomjx. Table 1 shows the local access
latency as well as the energy consumption at different levels
of memory. The aforementioned values have been retrieved
by employing CACTI [28]. The value of LL is obtained from
[23], [29] and equals 1 cycle.

Definition 7. Energy Consumption.

The total energy consumption of the whole system (ET )
is calculated using

ET ¼ EC þ EN þ EM: (2)

Where EC is the computational energy consumption, EN rep-
resents the network energy consumption, and ED denotes
the energy consumption for storing/retrieving data from
to/from memory. Below we analyze the amount of energy
consumed by communication, computation, and cache
separately.

3.1 Network Energy

To calculate the network energy consumption, we have
adopted the model in [30] to calculate the energy consump-
tion per transferred bit over the network. The energy con-
sumed for transmitting a single bit from pj to pk is captured
by

BEjk ¼ hjk �RE þ hjk � 1
� �� LE þ 2� CE: (3)

RE indicates the energy consumed by various compo-
nents of a router that includes wires, buffers, and logic gates
to transmit a single bit. Moreover, CE denotes the energy
consumption when transferring a bit over a link between
the source/destination PE and the first encountered router.
On the other hand, the energy consumed over a link
between any two neighboring routers is represented by LE.
The number of hops or routers traversed by a bit from pj to
pk is captured by hjk. Note that hjk represents the minimum
Manhattan distance between any pair of cores pj and pk,
which is calculated through

hjk ¼ Xj � Xk

�� �� þ Yj � Yk

�� ��: (4)

Here, Xj and Yj represent row and column indices of pj in
a 2D mesh NoC, respectively. Let B be a matrix of size
jP j � jP j capturing the communication volume between
Pes which depends on task mapping. Specifically, bjk reflects
the amount of data exchanged between pj and pk. It must be
noted that bjk equals zero when j ¼ k. Consequently, given
a task mapping, the total network energy consumption of
NoC is calculated through

EN ¼
X

8j2P

X

8k2P
bjk �BEjk : (5)

3.2 Computational Energy

A NoC system is composed of heterogeneous PEs. The
computational energy consumed by a pj 2 P is calculated
based on the energymodel adopted from [31] and captured by

Pj tð Þ ¼ a� uj tð Þ � Pmax
j þ b� Pmax

j : (6)

Where ujðtÞ denotes the utilization of pj at t point in time,
and Pmax

j represents the maximum instantaneous power
consumption of pj. It must be noted that the first component
reflects the power consumption when varying the utiliza-
tion of the corresponding PE, while the second component
represents the static power. The parameters a and b shown
in Eq. (6) depend on NoC architecture and their sum equal
to one. Total computational energy consumption of all proc-
essing cores can be calculated through Eq. (7), where T’ rep-
resents the total simulation time

EC ¼
X

8pj2P

ZT 0

0

Pj tð Þdt (7)

3.3 Memory Energy

Based on memory model presented in Definition 5, the
cache energy consumption can be calculated using Eq. (8).
Where ejz indicates the energy spent when a unit of data is
accessed frommjz

ED ¼
XDj j

n¼1

XPj j

j¼1

XMj j

z¼1

S dnð Þ � qnjz � ejz : (8)

Problem Statement. Based on the aforementioned formulation
the problem can be formally stated as: “Given a task-DAG and
the corresponding data-DAG, try to find a feasible mapping of
tasks and data onto the available resources such that to mini-
mize: (a) makespan; and (b) total energy consumption.”

TABLE 1
Specification of Memory Systems

Cache
/Memory

Size Access
Latency
(cycles)

Access
Latency
(ns)

Access
Energy
(nJ)

L-1 32 KB 2 0.408 0.023
L-2 1 MB 6 1.076 0.292
L-3 16 MB variable variable 0.883
RAM 2 GB 200 21.77 4.593
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4 PROPOSED HEURISTICS

Before proceeding to the description of the algorithms pro-
posed in this paper, we must say that we have a working
example for each algorithm. The working example is based
on the task-DAG and data-DAG shown in Figs. 3 and 4,
respectively. Note that two processors (p1 and p2) are
employed for the corresponding example, where their proc-
essing capacity is the same, while p2 is less energy efficient
against p1. For simplicity reasons, we assume that there are
only two local cache/memories on each PE, with both of
them being assumed as distributed (not private). The stor-
age capacity, access latency as well as access energy of each
cache/memory are shown at Table 2.

The summary of each algorithm performance in both
energy consumption and makespan is shown at Table 3.

4.1 Greedy Algorithm

The greedy algorithm attempts to reduce the makespan and
energy consumption by scheduling the tasks to earliest
available processing core having least energy consumption.
The greedy algorithm traverses the task-DAG in breadth
first search (BFS) order and creates a priority list of tasks
based on the level a task can be found within the DAG.
Tasks at the same level are scheduled on the processing
core resulting in the earliest start time (EST). In case more
than one PE provides the same EST, the PE having the low-
est energy consumption is chosen. Similarly, if more than
one task has same EST, then ties are broken by scheduling
the task with the highest sum of computational and com-
munication cost. Moreover, data required by the task is
placed at an available cache/memory at the same core
where the given task is scheduled. The cache is searched
from the lowest level to the highest level (i.e., L1, L2, L3,
main memory) and data is placed at first available cache

having the required capacity. We must note that when
local caches cannot satisfy the required capacity, greedy
algorithm searches for a remote cache/memory based on
the Manhattan distance.

It must be noted that EST of ti is calculated by Eq. (9),
with DAT ðtm; ti; pjÞ representing the data arrival time from
tm to ti, given that the assignment of tm as well as the place-
ment of the data produced by tm have already been fixed.
Specifically, Eq. (10) states that the point in time whereby ti
reaches the data generated by tm equals the completion time
of tm plus the time needed from the PE executing ti to access
the data exchanged between tm and ti. The completion time
of a task tm executed on px is captured by Eq. (11) when tm
is a join task (i.e., a task that has more than one predeces-
sors), and by Eq. (12) otherwise. It must be noted that ETmx

captures the time needed for tm to be executed onto px

EST tið Þ ¼ min
8pj2P

max
8tm2pred tið Þ

DAT tm; ti; pj
� �

(9)

DAT tm; ti; pj
� � ¼ CT tm; f mð Þð Þ þRAL

f mð Þ
j;q i;mð Þ (10)

CT tm; pxð Þ ¼ ETmx (11)

CT tm; pxð Þ ¼ EST tmð Þ þ ETmx (12)

In Fig. 5 we show an example of how Greedy algorithm
schedules the task-DAG and data-DAG shown in Fig. 3 and
Fig. 4, respectively. For simplicity reasons we do not involve
private caches and assume that m1,1 and m2,1 represent the
distributed cache, while m1,2 and m2,2 the distributed mem-
ory. The computational requirements of a task are reflected
by the number of cycles required to execute the respective
task. For instance, t1:5 indicate that task t1 requires 5 cycles
to execute. Moreover, d1:1 indicates that the size of d1
equals 1 unit. Note that it takes 6 cycles (6� 1 ¼ 6) for p1 to
store d1 onto m1,2 cache. Similarly, d2:2 indicates that the size
of d2 equals 2 units. Note that it takes 4 cycles (2� 2 ¼ 4)
for p1 to store d2 onto m1,1. The remote memory access
latency incurs an additional number of cycles that include:
(a) one cycle for each link traversed and (b) two cycles for
each router involved to transfer data between source and
destination PEs. Regarding the current examples, we
assume that the number of hops between p1 and p2 equals
one. Consequently, it takes seven cycles (5þ 2 ¼ 7) for p1 to

Fig. 3. Task-DAG.

Fig. 4. Data-DAG of task-DAG shown in Fig. 3.

TABLE 2
Details of Cache Parameters

Cache/memory Capacity Access Latency Access Energy

m11/m21 3 data units 2 cycles 0.023 nJ
m12/m22 10 data units 6 cycles 0.292 nJ

TABLE 3
Results for the Proposed Algorithms

Technique Energy Makespan Energy% Makespan%

Greedy 127.01 41 100 100
CP 87.39 37 68.81 90.24
BL 73.5 32 57.87 78.05
TDCS 93.95 33 73.97 80.49
BLTS 73.5 32 57.87 78.05
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store d3 onto m2,1. Particularly, five cycles represent the
latency for transferring data within NoC, while two cycles
represent the memory access latency. As can be seen in
Fig. 5, there are many idle slots leading to an increase in
makespan as well as energy consumption. At Table 3, we
can see the results of Greedy regarding both makespan and
energy consumption.

4.2 Critical Path Based Algorithm (CP)

Critical path (CP) is determined as the longest path in the
DAG from an entry node to exit node. To calculate critical
path, we consider both computational requirements of each
task and the weights of edges connecting interdependent
tasks. For instance, consider the sample DAG provided in
Fig. 3. The critical path is determined as the path that goes
through tasks t1, t3, t6, and t7. The above path has the highest
aggregate weight value of 17 among all of the paths in the
respective DAG. The critical path based algorithm calcu-
lates the critical path for a given DAG and schedules all the
tasks and data belonging to the critical path onto the same
PE. The PE is chosen according to the criterion that it pro-
vides EST for the first task on the critical path. In case more
than one PE has the same EST, then the PE with the lowest
energy consumption is chosen. Because p1 is more energy
efficient against p2, we choose to schedule t1, t3, t6, and t7 on
p1. However, a task cannot be scheduled until all of its pred-
ecessors are not scheduled. Therefore, tasks with prece-
dence constraints are kept in the ready list and are
scheduled as soon as all of their predecessors have finished
their execution. After the execution of a task belonging to
the critical path is finished, the critical path is again calcu-
lated for the remaining tasks and the process is repeated
until all the tasks are scheduled. Therefore, after t1 finishes
its execution, in the next iteration tasks t2 and t5 lie on the
critical path, with t2 being scheduled on p2 due to the fact
that p2 reports lower EST for t2 against p1. Note that before
t2 is executed in p2, t3 is executed on p1. By following the
aforementioned rational the rest tasks are scheduled onto
PEs, with the schedule being shown in Fig. 6. It must be

noted that the data accessed by a task are placed on the local
caches/memory of the PE executing the corresponding task.
For the placement of data items, the cache/memory is
searched from the lowest to the highest level, with the data
being placed at the first available cache/memory having the
required capacity. In case there is no available capacity in
the local cache/memory of the respective PE, then data are
placed to the closer remote cache/memory.

As can be seen in Fig. 6, the schedule generated by CP is
comparatively better than the one produced by Greedy
regarding makespan. By looking also into Table 3, we
observe that CP is also superior against Greedy regarding
energy consumption. However, there still exists significant
number of idle slots in the generated schedule. This is pri-
marily due to the reason that both of the aforementioned
approaches do not consider data allocation and task sched-
uling in a joint manner. Therefore, approaching the task
and data scheduling problem in a unified manner, more
sophisticated solutions are possible.

4.3 b-Level Based Algorithm (BL)

In this sectionwe present an algorithm that utilizes the b-level
(BL) priority of tasks and data for scheduling. The b-level
value of a task is calculated by taking into consideration the
longest path from the task to the exit task. Particularly, we cal-
culate the b-level value of each task as the sumof computation
and communication costs along the critical (longest) path
from the specific task to the exit task. For instance, the critical
path from t1 goes through t3, t6, and t7. Consequently, the b-
level of t1 is calculated as 17when taking the sum of computa-
tion and communication costs along the critical path. After
the calculation of the b-Level of each task in the task-DAG, the
list of b-Level values is sorted in a descending order.

Table 4 presents the b-Level values of the tasks shown in
Fig. 3. The pseudocode of BL is presented in Table 5. The
algorithm traverses the list and places the tasks at the PE
providing the earliest completion time (in case of a tie the
PE with the lowest energy consumption is chosen). After
scheduling a task, the algorithm schedules the data items

Fig. 6. Critical Path based algorithm (CP).Fig. 5. Greedy approach.
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required by the task. The priority of data items will be the
same with the order that the respective task receives the
corresponding data items. Consequently, data items having
higher priority are scheduled first and are granted the
opportunity to be placed at the lowest (fastest) cache/
memory, given that its available capacity satisfies the stor-
age requirements of data items. Fig. 7 depicts the schedule
generated by BL. It is observed that BL achieves a better
schedule against Greedy and CP regarding both energy
consumption and makespan.

4.4 Task and Data Co-Scheduling (TDCS)

The pseudocode of TDCS algorithm is shown in Table 6.
The main idea of the algorithm is to schedule tasks based on
the amount of data shared between a task and all of its suc-
cessor tasks, as well as to perform swaps between data.

The algorithm initially creates a set of ready tasks. Ready
tasks are those tasks that do not have any predecessor tasks
or whose predecessor tasks have already been scheduled.
Initially, the ready task list contains only the entry tasks. In
the next step, TDCS sorts the tasks in ready list based on the
amount of data shared by the given task and its successor
tasks in a descending order. In case of a tie, the task with
the higher computational requirements is chosen first. The
ready task list is iterated, with each task under consider-
ation being placed at the PE reporting EST. In case of a tie,
the PEwith the highest aggregate local cache/memory avail-
able capacity is chosen. Note that when placing data, we start
with the fastest cache/memory. In case no local cache/mem-
ory satisfies the required space of the corresponding data

item, TDCS places data to the nearest (in terms of Manhattan
distance) remote cache/memory.

Data-Swapping routine is invoked whenever a data item
dk is not placed at the fastest cache/memory. The routine
attempts to swap dk with another data item dk’ located at a
faster cache than that of dk. If after the swap of dk with dk’ (a)
the task requiring access to dk has a better EST than that
before performing data swapping, and (b) the task requiring
access to dk’ has EST that is not worse than that before per-
forming data swapping. The pseudocode of data-swapping
routine is shown at Table 7.

In Fig. 8 we show an example of TDCS execution (before
applying Data-Swapping routine) for the task-DAG and
data-DAG shown in Figs. 3 and 4, respectively. Initially,
only the entry task t1 is in the ready list which is scheduled
on p1 since it provides EST for t1 and has the lowest energy
consumption. In the sequel, t2, t3, and t4 are added to ready
list. Note that because there is a tie between t2 and t4 in
terms of the data exchanged between them and their succes-
sors, we schedule first t4 because it has higher computa-
tional requirements than t2. Since there is also a tie in terms
of EST for both p1 and p2, t4 is scheduled on p1 because it is
more energy efficient than p2. The same holds for t2, which
is also scheduled on p1. Consequently, d2 and d1 required by
t4 and t2, respectively, are placed at m11. Following the same
rationale, we place t3 on p2, with d3 (required by t3) being
placed at m21. Task t5 and t7 are scheduled on p1, while t6 on
p2. The rest data items are placed on m11.

In Fig. 9, we show the execution of TDCS after performing
data swapping routine. Specifically, data swapping routine is
called with d4 being its input. The swap of d4 with d6 is exam-
ined, with the EST of both t5 and t7 being reduced after per-
forming the respective swap. Therefore, the swap is not
revoked, with the makespan being reduced by four cycles
against the makespan of the case where no data swap is
performed.

4.5 b-Level Task Stealing (BLTS)

At Table 8, we present modified version of the b-level
based algorithm (named BLTS) by applying a task stealing

TABLE 4
b-Level Values of Tasks

Task b-level value

t1 17
t3 11
t2 10
t4 7
t6 6
t5 5
t7 1

TABLE 5
B-Level Based Algorithm

Algorithm 1: b-Level (BL) based scheduling
Input: task and data DAG, list of tasks T, list of data items D,
list of processing cores P

1. Compute the b-Level of all tasks in task-DAG
2. Sort tasks in decreasing order regarding their b-Level

value
3. For each ti 2 T
4. Let p’¼ PE that reportsminimumcompletion time for ti
5. Assign ti to p’
6. For each data item dn needed to be accessed by ti
7. m’ ¼ fastest cache/memory having the required

capacity to host dn
8. Place dn at m’
9. Update available capacity of m’
10. End For
11. End For

Fig. 7. B-Level based algorithm (BL).
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mechanism. The task stealing mechanismworks by identify-
ing an idle slot generated after scheduling a task on any
given processing core. After identifying an idle slot, the algo-
rithm attempts to find an appropriate task that can be sched-
uled within the respective idle slot. To find such a task, we
employ the precedence level (p-level) of tasks. The p-level of
a task is calculated as the number of edges along the path
from entry task to the corresponding task. For instance, the
p-level value of t6 and t7 is 2 and 3, respectively. We create
two lists of tasks. In the first list the tasks are sorted according
to their p-level values, while in the second list the tasks are
sorted according to their b-level values. The b-level task list
is iterated to schedule tasks. If a task is a join task, then it is
scheduled on the same PE with its predecessor that has the
highest value formin8px2P && px 6¼fðmÞfDAT ðtm; ti; pxÞg. Other-
wise the task is scheduled on the PE providing the minimum

completion time. Data are placed in the same way as that of
CP. Once a task ti is scheduled that results in idle slot(s) on
the scheduled processor, we find all the tasks having the
same p-level with ti. The p-level task list is iterated and the
identified idle slots are filledwith the traversed tasks.

We must note that here we do not show an example of
scheduling the tasks and data shown in Figs. 3 and 4. The
above is because the result is exactly the same with that of
BL regarding both energy consumption and makespan.

5 COMPLEXITY ANALYSIS OF ALGORITHMS

5.1 Time Complexity of Critical Path Algorithm

The time complexity of finding the critical path is O(T).
At each iteration, the number of tasks is reduced by at

TABLE 6
Task and Data Co-Scheduling Algorithm

Algorithm 2: Task and data co-scheduling (TDCS)
Input: task and data DAG, list of tasks T, list of data items D, list of processing cores P

1. DO
2. RList: ¼ Find the set of ready tasks
3. Sort tasks in RList in descending order based on amount of data exchanged by a task and its successor tasks
4. FOR each ti in RList in sorted order
5. p’ ¼ core that provides EST and has highest aggregate cache/memory available capacity
6. Schedule ti at p’
7. FOR each data item dk required by ti
8. m’ ¼ fastest cache/memory at p’ having the required capacity to store dk
9. IF m’ 6¼ null THEN
10. Place dk at m’
11. ELSE
12. Place dk at the nearest remote cache/memory with the required available capacity
13. END IF
14. IF m’ 6¼ L1 cache
15. Data-Swapping (dk)
16. END IF
17. END FOR
18. END FOR
19. Remove ti from ready list
20. WHILE (all tasks and data items are not scheduled);

TABLE 7
Data Item Swapping Routine

Data Swapping Routine
Input: data item dk

1. calculate ESTk of task that requires the data item dk
2. FOR each data item dj currently placed at a fastest

cache than that dk is currently located
3. IF (S(dj) þ available capacity at cache dj is currently

located) > ¼ S(dk) THEN
4. Calculate the maximum ESTj among the tasks

requiring access to dj
5. Swap dj and dk
6. Calculate new ESTs, S_ESTk and S_ESTj

7. D ESTk ¼ ESTk � S ESTk

8. D ESTj ¼ ESTj � S ESTj

9. IF DESTk > 0 AND DESTj � 0 THEN
10. break;
11. ELSE
12. Revoke Swap
13. END IF
14. END FOR

Fig. 8. TDCS before data swap.
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least one. For each task we schedule we need to examine
P PEs. By employing arithmetic regression, we find that
the time complexity for the task scheduling phase is
OðP � T � ð1þ T Þ=2Þ, which is equivalent to OðP � T 2Þ.
For the phase of data placement, we can consider that
the number of memories per PE is a constant. Therefore,
the time complexity for the data placement phase is
OðD� P Þ.

The space complexity of CP algorithm is shown in

Oð2T þ 2E þ P þDþ T � Pð Þ þ D� Pð Þ: (13)

Here, 2E represents the number of edges participating
in task-DAG and data-DAG. We need two lists, each of
size T to store the task data and b-Level values of each
task leading to the term 2T. We need a matrix of size
T � P to represent the task to PE mapping. Moreover, a
matrix of size ðD� P Þ is required to store data items to
cache/memory mapping.

5.2 Complexities of b-Level Based Algorithm

The time complexity of finding the b-level of all of the tasks
equal OðT 2Þ. The list of b-level values is sorted in
OðT � logðT ÞÞ time. The time complexity for scheduling a
task is equal to OðP Þ. The time complexity of data place-
ment phase is the same with that of CP.

The space complexity of BL is exactly the same with
that of CP.

5.3 Time Complexity of Task and Data
Co-Scheduling Algorithm

The time complexity for finding the ready list is OðT Þ, while
the time complexity for sorting the ready list equals
OðT � logðT ÞÞ. Because of data task co-scheduling the time
complexity of scheduling both task and data equals
OðT � P þD2Þ.

The space requirements of TDCS algorithm are similar to
the space requirements of BL.

Fig. 9. TDCS after data swap.

TABLE 8
b-Level Based Algorithm with Task Stealing Approach

Algorithm 3: b-Level based scheduling with task stealing (BLTS)
Input: task and data DAG, list of tasks T, list of data itemsD, list of processing cores P

1. Compute b-level of all tasks in task-DAG
2. Compute p-level of all tasks in task-DAG
3. Sort tasks in decreasing order according to b-level
4. FOR each ti 2 T
5. IF ti is a join node THEN
6. ta ¼ argmaxtm2predðtiÞ min8px2P && px 6¼fðmÞfDAT ðtm; ti; pxÞg
7. p’ ¼ PE where ta is scheduled on
8. ELSE
9. p’ ¼ core that reports minimum completion time
10. END IF
11. Assign ti to p’
12. FOR each data item dn required by ti in sorted order of b-level value
13. m’ ¼ fastest available cache/memory having required capacity
14. Place dn at m’
15. Update available capacity of m’
16. END FOR
17. IF after scheduling ti we result in idle slot(s) THEN
18. pList ¼ all tasks with same p-level value as ti not already scheduled
19. FOR each tp in pList in descending order of

b-level value
20. IF size of tp < ¼ idle slot THEN
21. Schedule tp in idle slot
22. ti ¼ tp
23. Go to line 17
24. END IF
25. END FOR
26. END IF
27. END FOR
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5.4 Time Complexity of Task Stealing Algorithm

The time complexity of finding p-level and b-level values
equal OðT 2Þ. The time complexity of scheduling task and
data equals OðP � T þ P �Dþ T 3Þ. The first term corre-
sponds to the first if inside the global FOR, the second term
corresponds to the first inner FOR, while the third term cor-
responds to the second inner FOR.

The space requirement of BLTS is similar to those of BL
algorithm. The difference is that in BLTS, we use an addi-
tional list to store the p-Level values of all tasks leading to
the term 3T. Consequently, the space complexity of task
stealing algorithm is given by

O 3T þ T � P þ 2E þDþD� Pð Þ: (14)

5.5 Space Complexity of Algorithms

However, the space requirements of the aforementioned
algorithms can be further reduced significantly in case a
linked list based approach is adopted to store task to proces-
sor mapping and data items to cache mapping, instead of
using matrices.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

The experimental evaluation is conducted over varying
mesh sizes ranging from 5� 5 to 50� 50meshNoC. For each
NoC size, the results are averaged over four different sets of
application graphs where the number of tasks ranges from
100 to 10,000 on average depending on the NoC size. Specifi-
cally, for each mesh NoC we generate four different sets of
graphs, with the results of the experiments being averaged.
Synthetics task graphs have been generated through task
graphs through TGFF tool [32] and the graph library pro-
vided in [33]. The data-DAG is constructed by adding a node
for each edge in the corresponding task-DAG. The edges in
the data-DAG are constructed based on task dependencies
appearing in the corresponding task-DAG.

Greedy algorithm serves as a yardstick for the evaluation
of the proposed algorithms as well as two state-of the-art
heuristics, namely: (a) task assignment considering data allo-
cation (TAC-DA) and (b) task ratio greedy scheduling (TRGS)
heuristic proposed in [11]. TAC-DA algorithm works in two
phases. At first phase, a critical-path based algorithm [34] is
used to find the appropriate task mapping. At second phase,
data items are allocated to minimize the energy consumption
considering the time constraint and taskmapping obtained at
the first phase. On the other extreme, TRGS considers data
allocation while scheduling the tasks. Each data item is allo-
cated to the local cache/memory of the processor where the

task is scheduled. Afterwards, TRGS attempts to iteratively
reduce the energy consumption by moving data items to
lower energy nodes considering cost-to-time ratio.

6.2 Results and Discussion

In this section,we quantify the benefits of proposedheuristics.
The performance of algorithms is evaluated based on two
metrics: (a) makespan and (b) energy consumption. It must
be noted that we refer to mesh NoCs from 5 x 5 to 10 x 10 as
small-sized NoCs, from 10 x 10 to 25 x 25 as medium-sized
NoCs, while from 30 x 30 to 50 x 50 as large-sizedNoCs.

In Figs. 10, 11, and 12 we report the makespan achieved
by all the proposed algorithms as well as the two state of
the art algorithms for various mesh NoC sizes. The results
are normalized according to Greedy algorithm. Experimen-
tal results reveal that BLTS and TDCS algorithms outper-
form the rest algorithms reporting lower average makespan
in all of the three cases (small-sized, medium-sized, and
large-sized NoCs). Particularly, BTLS reported 40 and 30
percent lower makespan on average compared to Greedy
and CP algorithms, respectively. Similarly, TDCS achieved
on average 31 and 23 percent lower makespan compared to
Greedy and CP, respectively. However, TDCS has slightly
higher makespan, on average 7 percent higher, compared to
BLTS. Regarding the algorithms found in the literature,
TRGS exhibited lower makespan compared to TAC-DA;
while, 15 and 5 percent lower makespan on average com-
pared to Greedy and CP, respectively.

Moreover, we conducted experiments to analyze the
behavior of algorithm over varying mesh sizes. Fig. 13 and
14 show the makespan of algorithms on varying mesh
NoCs. BLTS algorithm consistently achieves lower make-
span over all NoC sizes compared to the rest algorithms.
TDCS exhibits similar behavior and achieves lower make-
span compared to the rest algorithms except BLTS in small-
sized mesh NoCs. Whereas, when NoC sizes increase, the

Fig. 10. Normalized makespan (5 � 5 to 10 � 10).
Fig. 11. Normalized makespan (15 � 15 to 25 � 25).

Fig. 12. Normalized makespan (30 � 30 to 50 � 50).
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performance of TDCS becomes closer to that of BL. Particu-
larly, 30 � 30 NoC onwards, the difference between make-
span of TDCS and BL is almost negligible.

The normalized energy consumption of the algorithms is
reported in Figs. 15, 16, and 17. On average, BLTS achieves
lower energy consumption compared to the rest algorithms,
with TDCS following closely. Particularly, BLTS and TDCS
achieved 37 and 33 percent lower average energy consump-
tion compared to Greedy algorithm, respectively. It can be
noticed that for small-sized NoCs, TRGS achieves the lowest
average energy consumption compared to the rest algo-
rithm. Specifically, TRGS reported approximately 5 percent

lower average energy compared to BLTS and TDCS. How-
ever, formedium-sized and large-sizedNoCs, TRGS exhibits
higher energy consumption compared to BLTS and TDCS.

Figs. 18 and 19 show the behavior of algorithms over
varying NoC sizes in terms of energy consumption. It is
observed that TRGS achieves the lowest energy consump-
tion for almost all small-sized NoCs except for the case of
6 � 6 and 9 � 9, where TRGS reports higher energy con-
sumption than that of BLTS and TDCS. On the other
extreme, BLTS and TDCS consistently achieve lower energy
consumption compared to the rest algorithms for medium-
sized and large-sized NoCs.

In Fig. 20, we show in a box plot the makespan (in msec)
achieved by each algorithm taking into account all mesh sizes.
Specifically, we show the 5 � 5 (bottom), 25 � 25 (middle),
and 50� 50 (top) mesh sizes. For clarity reasons, the box plots
for energy consumption (in Joules) are depicted in Figs. 21
and 22. In Fig. 21, we show the 5 � 5 (bottom) and 25 � 25
(top)mesh sizes; while Fig. 22 depicts the 50� 50mesh size.

Fig. 13. Normalized makespan over varying mesh sizes.

Fig. 14. Normalized makespan over varying mesh sizes.

Fig. 15. Normalized energy consumption (5 � 5 to 10 � 10).

Fig. 16. Normalized energy consumption (15 � 15 to 25 � 25).

Fig. 17. Normalized energy consumption (30 � 30 to 50 � 50).

Fig. 18. Normalized energy consumption over varying mesh sizes.

Fig. 19. Normalized energy consumption over varying mesh sizes.
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7 CONCLUSIONS AND FUTURE WORK

This paper studied the problem of unified task scheduling
and data allocation for NoC based multicores considering
energy consumption and makespan minimization. A feasible
system model with four level cache/memory hierarchies is
presented.

We proposed three scheduling algorithms that show
interesting tradeoffs between energy consumption and
makespan. Particularly, we presented two algorithms that
utilize b-level values of tasks. Moreover, we incorporated a
task stealing approach in one of the b-level based algorithm
to further optimize the schedule length. Similarly, a task and
data co-scheduling algorithm is presented to achieve a good
tradeoff between energy consumption and makespan. The
experimental results revealed that BLTS algorithm consis-
tently outperformed all the other algorithms in terms of
makespan. In case of energy consumption, TRGS exhibited
lower energy consumption on average for smaller NoC sizes
but for medium-sized and large-sized NoCs, BLTS achieved
lower energy consumption compared to the rest algorithms.

There can be several directions for future work. First, we
aim to develop task scheduling heuristics that evenly dis-
tribute the load among processing cores in order to balance
the heat within the NoC based multicore architecture. Sec-
ond, network contention has significant impact on applica-
tion performance and network throughput in NoC based
multicores. Therefore, congestion aware task and data allo-
cation is also an interesting problem to be studied.

ACKNOWLEDGMENTS

Samee U. Khan’s work was supported by (while serving at)
the National Science Foundation. Any opinion, findings, and
conclusions or recommendations expressed in this material

are those of the authors and do not necessary reflect the views
of the National Science Foundation. Nikos Tziritas’ work was
supported by NSFC and PIFI International Scholarship under
the grants 61550110250 and 2017VCT0001, respectively.

REFERENCES

[1] A. K. Datta and R. Patel, “CPU scheduling for power/energy
management on multicore processors using cache miss and con-
text switch data,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 5,
pp. 1190–1199, May 2014.

[2] S. Borkar and A. A. Chien, “The future of microprocessors,” Com-
mun. ACM, vol. 54, pp. 67–77, 2011.

[3] D. Clark, “Intel rechisels the tablet on Moore’s law,” Wall Street J.
Digits Tech News Anal., 2015. [Online]. Available: https://blogs.wsj.
com/digits/2015/07/16/intel-rechisels-the-tablet-on-moores-law/

[4] K. Chang, et al., “Performance evaluation and design trade-offs
for wireless network-on-chip architectures,” ACM J. Emerging
Technol. Comput. Syst., vol. 8, 2012, Art. no. 23.

[5] K. T.Malladi, B. C. Lee, F. A.Nothaft, C.Kozyrakis, K. Periyathambi,
and M. Horowitz, “Towards energy-proportional datacenter mem-
ory with mobile DRAM,” in Proc. ACM SIGARCH Comput. Archit.
News, 2012, pp. 37–48.

[6] Y.-J. Lin, C.-L. Yang, J.-W. Huang, T.-J. Lin, C.-W. Hsueh, and
N. Chang, “System-level performance and power optimization
for MPSoC: A memory access-aware approach,” ACM Trans.
Embedded Comput. Syst., vol. 14, 2015, Art. no. 8.

[7] Z. Yu, et al., “A 16-core processor with shared-memory and
message-pacommunications,” IEEE Trans. Circuits Syst. I: Regular
Papers, vol. 61, no. 4, pp. 1081–1094, Apr. 2014.

[8] L. A. Bathen and N. Dutt, “HaVOC: A hybrid memory-aware vir-
tualization layer for on-chip distributed ScratchPad and non-vola-
tile memories,” in Proc. 49th Annu. Design Autom. Conf., 2012,
pp. 447–452.

[9] K. Sudan, K. Rajamani, W. Huang, and J. B. Carter, “Tiered mem-
ory: An ISO-power memory architecture to address the memory
power wall,” IEEE Trans. Comput., vol. 61, no. 12, pp. 1697–1710,
Dec. 2012.

[10] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical place trees: A
portable abstraction for task parallelism and data movement,” in
Proc. Int. Workshop Lang. Compilers Parallel Comput., 2009, pp. 172–
187.

[11] Y. Wang, K. Li, H. Chen, L. He, and K. Li, “Energy-aware data
allocation and task scheduling on heterogeneous multiprocessor
systems with time constraints,” IEEE Trans. Emerging Topic Com-
put., vol. 2, no. 2, pp. 134–148, Apr.-Jun. 2014.

[12] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors,” ACM Comput.
Surv., vol. 31, pp. 406–471, 1999.

[13] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Data
allocation optimization for hybrid scratch pad memory with
SRAM and nonvolatile memory,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 21, no. 6, pp. 1094–1102, Jun. 2013.

[14] W. Zhang and Y. Ding, “Hybrid SPM-cache architectures to
achieve high time predictability and performance,” in Proc. IEEE
24th Int. Conf. Appl.-Specific Syst., Archit. Process., 2013, pp. 297–304.

[15] Y. Guo, Q. Zhuge, J. Hu, J. Yi, M. Qiu, and E. H.-M. Sha, “Data
placement and duplication for embedded multicore systems with
scratch pad memory,” IEEE Trans. Comput.-Aided Design Int. Cir-
cuits Syst., vol. 32, no. 6, pp. 809–817, Jun. 2013.

Fig. 20. Makespan over 5, 25, and 50 mesh sizes.

Fig. 21. Energy consumption over 5 and 25 mesh sizes.

Fig. 22. Energy consumption over 50 � 50 mesh size.

MAQSOOD ET AL.: LEVERAGING ON DEEP MEMORY HIERARCHIES TO MINIMIZE ENERGY CONSUMPTION AND DATA ACCESS LATENCY ON... 165



[16] Q. Chen, M. Guo, and Z. Huang, “Adaptive cache aware bitier
work-stealing in multisocket multicore architectures,” IEEE Trans.
Parallel Distrib. Syst., vol. 24, no.12, pp. 2334–2343, Dec. 2013.

[17] Y. He, C. J. Xue, C. Q. Xu, and E. H.-M. Sha, “Co-optimization of
memory access and task scheduling on MPSoC architectures with
multi-level memory,” in Proc. 15th Asia South Pacific Design Autom.
Conf., 2010, pp. 95–100.

[18] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad
memory optimization and task scheduling for MPSoC
architectures,” in Proc. Int. Conf. Compilers, Archit. Synth. Embedded
Syst., 2006, pp. 401–410.

[19] Q. Kang, H. He, and H. Song, “Task assignment in heterogeneous
computing systems using an effective iterated greedy algorithm,”
J. Syst. Softw., vol. 84, pp. 985–992, 2011.

[20] Q. Zhuge, Y. Guo, J. Hu, W.-C. Tseng, C. J. Xue, and E. H.-M. Sha,
“Minimizing access cost for multiple types of memory units in
embedded systems through data allocation and scheduling,”
IEEE Trans. Signal Process., vol. 60, no. 6, pp. 3253–3263, Jun. 2012.

[21] H. Cao, H. Jin, X. Wu, S. Wu, and X. Shi, “DAGMap: Efficient and
dependable scheduling of DAG workflow job in Grid,” J Super-
comput., vol. 51, pp. 201–223, 2010.

[22] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Dynamic power-aware
mapping of applications onto heterogeneous mpsoc platforms,”
IEEE Trans. Ind. Inform., vol. 6, no. 4, pp. 692–707, Nov. 2010.

[23] A. Banaiyanmofrad, G. Girao, and N. Dutt, “NoC-based fault-tol-
erant cache design in chip multiprocessors,” ACM Trans. Embed-
ded Comput. Syst., vol. 13, 2014, Art. no. 115.

[24] E. Herrero, J. Gonzalez, and R. Canal, “Distributed cooperative
caching: an energy efficient memory scheme for chip multiproc-
essors,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 5, pp. 853–
861, May 2012.

[25] M. Azimi, et al., “Integration challenges and tradeoffs for tera-
scale architectures,” Intel Techn. J., vol. 11, pp. 173–184, 2007.

[26] W. J. Starke, et al., “The cache and memory subsystems of the IBM
POWER8 processor,” IBM J. Res. Dev., vol. 59, pp. 3: 1–3: 13, 2015.

[27] S. Bell, et al., “Tile64-processor: A 64-core soc with mesh inter-
connect,” in Proc. IEEE Int. Solid-State Circuits Conf.-Dig. Tech.
Papers, 2008, pp. 88–598.

[28] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI
6.0: A tool to understand large caches,” Hewlett Packard Lab., Univ.
Utah, Salt LakeCity, UT, USA, Tech. Rep.HPL-2009-85, 2009.

[29] A. BanaiyanMofrad, G. Gir~ao, and N. Dutt, “A novel NoC-based
design for fault-tolerance of last-level caches in CMPs,” in Proc.
8th IEEE/ACM/IFIP Int. Conf. Hardware/Softw. Codesign Syst. Synth.,
2012, pp. 63–72.

[30] E. Antunes, A. Aguiar, F. S. Johann, M. Sartori, F. Hessel, and
C. Marcon, “Partitioning and mapping on NoC-based MPSoC: An
energy consumption saving approach,” in Proc. 4th Int. Workshop
Netw. Chip Archit., 2011, pp. 51–56.

[31] R. B. Atitallah, S. Niar, A. Greiner, S. Meftali, and J. L. Dekeyser,
“Estimating energy consumption for an MPSoC architectural
exploration,” in Proc. Int. Conf. Archit. Comput. Syst., 2006,
pp. 298–310.

[32] R. P. Dick, D. L. Rhodes, andW.Wolf, “TGFF: Task graphs for free,”
inProc. 6th Int.WorkshopHardware/Softw. Codesign, 1998, pp. 97–101.

[33] R. Sedgewick and K. Wayne, “Directed Graphs,” Algorithms, 4th
Ed., 2016.[Online]. Available: http://algs4.cs.princeton.edu/
42digraph/

[34] Z. Shao, Q. Zhuge, C. Xue, and E.-M. Sha, “Efficient assignment
and scheduling for heterogeneous DSP systems,” IEEE Trans. Par-
allel Distrib. Syst., vol. 16, no. 6, pp. 516–525, Jun. 2005.

Tahir Maqsood received the MS degree in com-
puter networks from Northumbria University,
U.K., in 2007. He is currently working toward the
PhD degree in the Department of Computer
Science, COMSATS Institute of Information Tech-
nology, Abbottabad, Pakistan. His research inter-
ests include application mapping, energy efficient
systems, and network performance evaluation.

Nikos Tziritas received the PhD degree from the
University of Thessaly, Greece, in 2011. He cur-
rently works in Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences. His
work has appeared in more than 40 publications.
He is received the Award for Excellence for Early
Career Researchers in Scalable Computing from
IEEETechnical Committee in ScalableComputing.

Thanasis Loukopoulos received the diploma in
computer engineering and informatics from the
University of Patras, Greece, in 1997. He
received the PhD degree in computer science
from the Hong Kong University of Science and
Technology (HKUST), in 2002. Currently, he
is Lecturer in the Department of Computer
Science and Biomedical Informatics, University
of Thessaly, Lamia, Greece. He has published
40 papers and had the best paper award in
ICPP 2001.

Sajjad A. Madani received the MS degree in
computer sciences from Lahore University of
Management Sciences and the PhD degree from
Vienna University of Technology. He works at
COMSATS Institute of Information technology as
associate professor. His areas of interest include
low power wireless sensor network and green
computing. He has published more than
40 papers in peer reviewed international confer-
ences and journals.

Samee U. Khan received the PhD degree from
the University of Texas, Arlington, Texas, in
2007. Currently, he is a program director with the
National Science Foundation, where he is
responsible for the Smart & Autonomous Sys-
tems program and Computer Systems Research
cluster. He also is a faculty with the North Dakota
State University, Fargo, North Dakota. His
research interests include optimization, robust-
ness, and security of computer systems. His
work has appeared in more than 350 publica-

tions. He is on the editorial boards of leading journals, such as the IEEE
Access, the IEEE Communications Surveys and Tutorials, the IET Wire-
less Sensor Systems, Scalable Computing, the IET Cyber-Physical Sys-
tems, and the IEEE IT Pro. He is an ACM distinguished speaker, an
IEEE distinguished lecturer, a fellow of the Institution of Engineering and
Technology (IET, formerly IEE), and a fellow of the British Computer
Society (BCS). He is a senior member of the IEEE.

Cheng-Zhong Xu received the PhD degree in
computer science from the University of Hong
Kong, in 1993. He is currently a director of Cloud
Computing Center in Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sci-
ences. His research interest is mainly in scalable
distributed and parallel systems and wireless
embedded computing devices. He has published
two books and more than 160 articles in peer-
reviewed journals and conferences in these
areas. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

166 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2017



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


