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Abstract—The rapid development of distributed energy re-
sources (DER) in the distribution grid calls for novel control and
coordination solutions. Optimal management of DER will enable
end-users to decrease their electricity costs and provide crucial
services to grid operators. In this paper, a decentralized Optimal
Power Flow (OPF) model is used to locally coordinate DER in
distribution networks, while considering the network constraints,
in a distributed, transparent and secure fashion. To achieve
that, a consensus-based distributed optimization algorithm is
developed using the general form Alternating Direction Method
of Multipliers (ADMM). To enable transparent and verifiable
management of the network, the paper provides a comprehensive
procedure for the implementation of the decentralized OPF on
a private blockchain-smart contracts platform. The performance
of the proposed framework is tested using real data from a case
study in a residential neighborhood in Amsterdam with different
varieties of DER. The implementation procedure on a blockchain-
smart contracts platform may be adopted in other problems that
require a smart contract to act as a virtual aggregator.

Index Terms—Distributed energy resources, optimal power
flow, distributed optimization, consensus algorithms, blockchain

I. INTRODUCTION

The rapid growth and adoption of distributed energy re-
sources (DER) in the distribution network, such as rooftop
Photovoltaics (PV) panels and electric vehicles (EV), calls
for novel management solutions for coordinating these DER.
Optimally managed DER can enhance end-users flexibility,
which in turn results in electricity cost reduction, provides
crucial services to grid operators and enables the matching of
demand and (local) renewable energy supply [1]. For example,
battery energy storage and EV charging can be scheduled to
periods of the day when PV energy is available, or when
electricity prices are low [2].

Proposed management schemes of DER in the low-voltage
(LV) network have typically assumed that the operation of
DER is centrally managed by an aggregator, a cooperative
utility or a microgrid operator [3], [4]. However, these central-
ized schemes suffer from scalability issues when the number
of DER is large [5]. Besides, they are typically met with low
acceptance by households due to limited financial incentives
and privacy concerns [6], [7]. In addition to considering
DER operation constraints for optimal economic dispatch,
some of these centralized control schemes also consider the
LV network constraints by means of solving the celebrated
Optimal Power Flow (OPF) problem [8].

Solving an OPF problem optimizes the power flow in the
network while ensuring that the system constraints are not
violated. Various decentralized versions of the OPF problem
have been proposed in literature which are surveyed in [9].

These decentralized versions typically employ decomposition
techniques that achieve optimality in a distributed manner.
One of the most common techniques to solve decentralized
optimization problems in this area is the Alternating Direction
Method of Multipliers (ADMM). ADMM is based on a de-
composition coordination procedure that allows to define local
subproblems for each node in a LV network or a microgrid.
The solutions of those local subproblems are coordinated to
solve the large global problem of the whole network [10].

However, without a central agent (i.e., an aggregator or
a microgrid operator) the exchange of information and the
validation and verification of the OPF solution for the whole
network becomes a challenge. Information and Communi-
cation Technologies (ICT) are being broadly employed in
the energy system and some emerging technologies such as
blockchain-smart contracts can enable the distribution of the
central agent role across all nodes in the LV network. Indeed,
blockchain technology has recently received significant atten-
tion in the area of smart energy systems as potential solution
for decentralized data storage and management as well as
computation without third-party supervision [7], [11].

The aim of this work is to provide a comprehensive frame-
work for implementing the decentralized ADMM-based OPF
on a private blockchain network that utilizes a smart contract to
act as a virtual aggregator. From the family of ADMM-based
consensus methods, we use the general form ADMM-based
consensus optimization class [10] since it represents a natural
fit to the OPF problem [12]. Each end-user optimizes its own
DER operation and power flow individually whilst optimality
of the whole network is achieved via a transparent and
secure blockchain-smart contracts platform using the ADMM
consensus algorithm. The paper provides a detailed modeling
of the consensus method and shows how a smart contract
can act as a virtual aggregator. Several steps in the ADMM
algorithm are distinguished where communication between the
end-users and the smart contract occurs to illustrate which
information must be shared by end-users with the blockchain
network. A case study from a realistic LV-network is used for
testing the performance of the proposed framework for a group
of households with different varieties of DER.

The paper is structured as follows. System design is pre-
sented in Section II. The OPF model and the ADMM-based
consensus formulation are described in Section III. Section IV
is dedicated to illustrate the implementation of the decentral-
ized OPF on the blockchain-smart contracts platform. A case
study is provided in Section V. Finally, the paper is concluded
in Section VI.
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Figure 1: An example of a graph-based network of 4 nodes.

II. SYSTEM DESIGN

In this work we consider a radial LV-grid that resembles a
network of power lines. This network can be modeled as a
graph with a set of nodes N , indexed by i = 0, 1, . . . , n, and
a set of edges (i.e., lines) E , where node 0 refers to the root
node (i.e., the feeder 0). A line in E is denoted by the pair of
nodes it connects (e.g., ij, where j is closer to the root node).
The neighbouring nodes of a particular node i can be regarded
as the parent and children of that node. The node closer to the
root node j is called the parent of i and is denoted by π(i),
while i is called the child of j. The set of children of a node
j is denoted as δ(j) := {i : (i, j) ∈ E} [13]. For simplicity,
the number of a line is assigned the number of the child node.

The complex line impedance is denoted as zi = ri + ixi,
where ri and xi are the line resistance and reactance, respec-
tively. vi is the complex voltage on each node i ∈ N and Ii
is the complex current flowing from node i to j (i.e., or to its
parent node π(i)). The complex power flow from node i to
node j is denoted Si = Pi +iQi, where Pi and Qi are the real
and reactive power flow from node i to node j, respectively.
We follow the convention that departing power is positive (i.e.,
when it flows along the line in the direction of the edge) and
arriving power is negative (i.e., in the direction opposite the
edge). Each edge can support power flow in either direction up
to a given maximum apparent power capacity Si. Fig. 1 shows
a simplified example of a graph-based network of 4 nodes.

A dispatchable thermal generator is attached to the feeder 0
to provide power to the network with a maximum generation
capacity Gmax. At any time t, the generator has a cost function
Ci,t(p

g
i,t) indicating the cost of generating electricity by the

energy source for each node in the network i (i.e., the cost of
the same load can be different at different times of the day).
We assume the thermal generator has a quadratic cost function
that is increasing and strictly convex [14] as

Ci,t(p
g
i,t) = αi,tp

g2

i,t + βi,tp
g
i,t + γi,t. (1)

Each node in the considered LV network represent a house-
hold. A node could also be any other building or DER in
the network, such as a community battery or an EV charging
station. Households have a base electricity demand at each
period of the day that is uncontrollable. A household might
have different varieties of DER (e.g., an on-site PV system
and/or an EV). We assume that the Vehicle-to-Grid (V2G)
service is not provided by EV in this study. Households with

PV systems (i.e., prosumers) can generate electricity locally at
some periods of the day. Households with EV have a flexible
demand that represents the amount of electricity needed to
charge their EV, which can be shifted during some periods
of the day. There is an Energy Management System (EMS)
in each household that is responsible for optimization and
communication with the different system components.

III. OPTIMIZATION PROBLEM FORMULATION

A. Branch Flow Model
In this work we adapt the branch flow formulation to model

the AC power flow at the steady-state in the considered single-
phase radial network [15]. The branch flow model is a Second-
order Cone (SOC) convex relaxation of the AC OPF problem
[8], [16]. We consider a multi-period OPF where at each period
t, the branch flow equations are derived as follows. Consider
the complex power loss from node i to j

|Ii,t|2zi,t =
P 2

i,t +Q2
i,t

|vi,t|2
zi,t, (2)

The squared voltage and current magnitudes are denoted νi
and ψi, respectively, and (2) can be rewritten as

ψi,tzi,t =
P 2

i,t +Q2
i,t

νi,t
zi,t, (3)

Assuming that the departing power from node i to j is
positive and the arriving power to j from i (i.e., Pj and Qj) is
negative, the real and reactive line losses can be written as

P 2
i,t +Q2

i,t = ψi,tνi,t, (4)
Pi,t + Pj,t = ri,tψi,t, (5)
Qi,t +Qj,t = xi,tψi,t. (6)

The above equations define the power through line ij into
node j. The real and reactive power injection by node i are the
power flows from i to j minus the sums of the flows through
the lines that arrive to i (i.e., from i’s children δ(i)) considering
the losses on those lines. This can be formulated as

pi,t = Pi,t −
∑

k∈δ(i,t)

(Pk,t − rk,tψk,t), ∀i, t, (7)

qi,t = Qi,t −
∑
k∈δ(i)

(Qk,t − xk,tψk,t), ∀i, t, (8)

where pi,t and qi,t are the difference between the real and
reactive power generation on one hand and real and reactive
power consumption on the other hand, such that pi,t = pgi,t−pdi,t
and qi,t = qgi,t−qdi,t. We note that pg0,t−pd0,t can also be interpreted
as the total real power injection into the network from the main
grid through the feeder 0.

The voltage at the node j, the parent node of i (also denoted
as vπ(i)), can be defined by Ohm’s law, as

vj,t = vi,t − Ii,tzi,t, ∀j, t. (9)

By taking the squared complex magnitude of each side of
(9)

νj,t = |vi,t − Ii,tzi,t|2, ∀j, t, (10)

νj,t = νi,t − 2Re[vi,tIi,tzi,t] + |Ii,t|2|zi,t|2, ∀j, t, (11)

νj,t = νi,t − 2(ri,tPi,t + xi,tQi,t) + (r2i,t + x2i,t)ψi,t, ∀j, t. (12)
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The only remaining nonconvexity in this formulation is
(3), which can be relaxed by changing the equality to "≤".
This should not change the resulting optimum since increasing
current, and hence line losses, should not improve most
realistic objectives [8]. Thus, (3) is relaxed as follows, which
results in a standard SOC form

P 2
i,t +Q2

i,t ≤ ψi,tνi,t, i = 1, . . . , n, ∀t. (13)

Equations (7), (8), (12) and (13) define a system of equa-
tions in the variables (P,Q, ν, ψ) := (Pi, Qi, ψi, (i, j) ∈ E , i =
1, . . . , n). This system of equations do not include phase
angles of voltages and currents which can be determined for
radial networks given (P,Q, ν, ψ) [16].

In addition to these equations, and in order to complete the
formulation of the AC-OPF problem, the following power flow
limits need to be respected

v2j,t ≤ νj,t ≤ v2j,t, ∀j, t, (14)

pg
i,t
≤ pgi,t ≤ p

g
i,t, ∀i, t, (15)

pd
i,t
≤ pdi,t ≤ pdi,t, ∀i, t, (16)

qg
i,t
≤ qgi,t ≤ q

g
i,t, ∀i, t, (17)

qd
i,t
≤ qdi,t ≤ qdi,t, ∀i, t, (18)

P 2
i,t +Q2

i,t ≤ Si,t
2
, i = 1, . . . , n, ∀t. (19)

As mentioned in Section II, each node in the network
represents a household (i.e., either a consumer or a prosumer)
Further, some households also own an EV. Therefore, some
nodes have additional local private constraints which must be
respected. An EV at node i is considered as shiftable load
with an average daily charging demand (Eev, av) which must
be met such as

T∑
t=1

pev
i,t ∆t = Eev, av, ∀i, (20)

where pev
i,t is a decision variable for scheduling EV charging

power at households with EV. The EV charging demand
(Eev, av) is equal to zero at households without EV.

EV charging power should be in between the upper (pev,d)
and lower (pev,d) charging limits to ensure that the EV power
rating is respected. The parameter ωi,t is used as an input for
scheduling EV charging at a certain timeslots (i.e., ωi,t=1 when
an EV is plugged in and can charge, and =0 otherwise) as

ωi,tp
ev,d ≤ pev

i,t ≤ ωi,tpev,d, ∀t, i. (21)

At each t, the following system balance constraint for
each node i applies, which balances the dispatchable thermal
generation (i.e., at the feeder 0) for node i (pg

i,t) and the local
PV electricity supply (ppv

i,t ) with the baseload demand (pbase
i,t )

and EV (pev
i,t ) demand as

pi,t = pbase
i,t + pev

i,t − p
pv
i,t − p

g
i,t, ∀i, t, (22)

where the local PV supply is equal to zero at households
without a PV system.

The market objective in this paper is to minimize the total
power generation costs over a period of time T by maximizing
the use of locally produced energy from the PV systems and

scheduling the shiftable demand of the EV. The objective
function can be formulated as follows:

minimize
N∑
i=1

T∑
t=1

Ci,t(p
g
i,t)

subject to (7), (8) and (12)− (22)

(23)

B. General Form Consensus Optimization
Consensus problems provide a general framework for dis-

tributed optimization. In this work, we use an ADMM-based
consensus optimization problem to solve the multi-period AC-
OPF formulated in (23) in a decentralized manner. For the sake
of clarity, the time index from each variable is omitted.

From the family of ADMM-based consensus optimization
formulations, we adapt the Global Form Consensus Opti-
mization where there are a number of local variables xl ∈
Rcl , l = 1, . . . , L that are related to their subproblems only,
with the objective f1(x1) + . . . + fL(xL) separable in xl.
Each of these local variables consists of different components
(cl) and each local variable component (xl)c corresponds to
a global variable component zg ∈ Rc, where the mapping
from local variable indices into a global variable index can
be written as g = G(l, c). This means that a local variable
component (xl)c corresponds to a global variable component
zg . Global variables couple subproblems together and the
consensus between local and global variables is achieved when

(xl)c = zG(l,c), l = 1, . . . , L, c = 1, . . . , cl. (24)

We define the variable z̃l ∈ Rcl which is the global
variable’s idea of what the local variable xl should be (i.e.,
(z̃l)c = zG(l,c)). The consensus constraint can then be written
as xl− z̃l = 0, l = 1, . . . , L. Consequently, the general form
consensus problem can be written as

minimize
L∑
l=1

fl(xl)

subject to xl − z̃l = 0, l = 1, . . . , L

(25)

The augmented Lagrangian of this problem is:

Lρ(x, z, y) =

L∑
l=1

(fl(xl) + yᵀl (xl − z̃l) + (ρ/2) ‖xl − z̃l‖22),

(26)
where yl ∈ Rcl is the dual variable. The general form
consensus problem of ADMM consists of the iterations

xk+1
l := argmin

xl

(fl(xl) + yk
ᵀ

l xl + (ρ/2)
∥∥xl − z̃kl ∥∥22) (27)

zk+1 := argmin
z

( m∑
l=1

(−yᵀl z̃l + (ρ/2)
∥∥xk+1

l − z̃l
∥∥2
2
)
)

(28)

yk+1
l := ykl + ρ(xk+1

l − z̃k+1
l ), (29)

where k is the iteration and for each l, xl- and yl-updates at
each k can be carried out locally, independently and in parallel.

The z-update step decouples across the components of z
and is found by averaging all entries of xk+1

l + (1/ρ)ykl that
correspond to the global index g as

zk+1
g :=

∑
G(l,c)=g

(
(xk+1
l )c + (1/ρ)(ykl )c

)∑
G(l,c)=g 1

. (30)
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With the average of a vector denoted with an overline, the
z-update can be written as

zk+1
g = xk+1 + (1/ρ)yk. (31)

And in a similar manner, the y-update can be written as

yk+1 = yk + ρ(xk+1 − zk+1
g ). (32)

Substituting (31) in (32) shows that after the first iteration∑
G(l,c)=g

(ykl )c = 0, (33)

Therefore, the z-update can be written as

zk+1
g := (1/kg)

∑
G(l,c)=g

(xk+1
l )c, (34)

where kg is the number of a local variable’s components that
correspond to a global variable component zg . In other words,
the z-update is calculated by averaging all local copies of the
global variable zg .

For consensus ADMM, the primal and dual residuals are
defined as

rk = xkl − z̃kl , sk = −ρ(zkg − zk−1g ). (35)

The consensus is obtained when the ADMM algorithm
converges which is determined using the following conditions∥∥rk∥∥

2
≤ εp,

∥∥sk∥∥
2
≤ εd, (36)

where εp and εd are the tolerances in the primal and dual
residuals which are typically assigned a very low value.

C. OPF and ADMM-based General Form Consensus

The AC-OPF of (23) can be reformulated in a distributed
manner using the ADMM-based general form consensus al-
gorithm. In this form, the global optimization problem can
be split into a number of subproblems. Every node will
solve its own subproblem locally and independently using its
own optimization objective and set of constraints. The local
subproblem for a node i can be formulated as

minimize
T∑
t=1

Ci,t(p
g
i,t)

subject to (7), (8) and (12)− (22)

(37)

The variables in the constraints can be divided in two
parts. The set of local private variables of a node contains
the variables pertaining to its local energy infrastructure,
and is denoted as xp := [pi, p

g
i , qi, q

g
i , p

ev
i , ωi, ψi]. The local

private variables are not shared with the network and remain
private. The set of coupling variables of a node contains the
local variables pertaining to its set of branch flow equations
and is denoted as xl := [Pi, Qi, vi, Pδ(i), Qδ(i), vπ(i)]. Every
coupling variable corresponds to a particular global variable,
the set of which is denoted as zg := [P,Q, v]. Fig. 2 shows
how the locally calculated coupling variables correspond to
the global variables in the present OPF problem. Since every
node will only have to calculate variables corresponding to the
adjacent edges and nodes, the full network topology will not
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Figure 2: An illustration of the ADMM-based general form
consensus method for the OPF problem in a 4-nodes network.

have to be known by any node. Every node must only know
who its neighbouring nodes (i.e., parent and children) are.

Using the general form consensus ADMM formulation de-
scribed in Section III-B, in iteration k+1 each node i receives
zk and solves the following local optimization problem

minimize
T∑
t=1

Ci,t(p
g
i,t)+y

kᵀ

l (xl−z̃kl )+(ρ/2)
∥∥xl − z̃kl ∥∥22 (38)

The nodes then send their coupling variables to the aggre-
gator, which updates z as

zk+1
g := (1/kg)

∑
G(l,c)=g

(xk+1
l )c (39)

The nodes then receive z̃k+1
l and update the penalty as

yk+1
l = ykl + ρ(xk+1

l − z̃k+1
l ) (40)

Finally, the values for the residuals are evaluated using (35)
and (36). If the conditions in (36) are satisfied, the optimization
process is complete. If not, the ADMM algorithm will proceed
with the next iteration.

IV. IMPLEMENTATION ON BLOCKCHAIN

A. Blockchain and the role of the smart contract

Blockchain is an emerging technology for decentralized
data storage and management as well as computation. It is
secured by a combination of cryptographic signatures and a
distributed consensus mechanism. Agents on the blockchain
network are able to come to a universal agreement on the
system state at each time step, even in the presence of
cyberattacks and participants joining/departing the network.
Therefore, a blockchain network allows agents to connect in
a secure fashion without reliance on a third party operation of
the platform. Possible applications for blockchain have been
recognized in many areas including in the energy sector [11].

The utility of blockchain technology can be expanded
through the use of smart contracts. A smart contract is a
piece of computer code that is deployed on the blockchain
and can execute certain functions when called upon by other
agents [17]. Smart contract technology allows decentralized
optimization on a blockchain network, enabling execution of
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the distributed OPF/ADMM algorithm without dependence on
a central agent (e.g., a third party aggregator). The smart
contract takes over the function of this central aggregator, thus
effectively functioning as a virtual aggregator. In this role, the
smart contract acts as the primary agent for nodes to interact
with during execution. Parts of the algorithm are moved to the
smart contract, and essential data that is needed by the nodes
for optimization is retrieved from the contract. The contract
also ensures that all nodes operate simultaneously by giving
permission to proceed with the next operation after all nodes
have declared completion of the previous section. The inherent
built-in delay in the blockchain verification process may make
the use of blockchain for real-time optimization implausible
or impractical. Therefore, the platform proposed in this study
is intended to provide a day-ahead forecast optimization of
energy flows.

B. Workflow of the network

Upon setting up the blockchain network every node i is
assigned a personal account with address λi. This account is
used to interact with the network and send/retrieve data to/from
the smart contract. The smart contract σ is deployed to the net-
work using the set of constructor variables θ := [n, ρ, εp, εd, µ]
that configure the algorithm. The variable µ represents the
maximum number of iterations. As the contract is deployed,
a new address λσ and the bytecode of the contract’s contents
ABIσ are generated. λσ and ABIσ must be known by all other
nodes to allow them to interact with the contract. After the
contract is deployed it will remain on the network indefinitely.

In the execution of the ADMM algorithm on the blockchain
network for OPF there are several steps that can be dis-
tinguished where there is communication between the smart
contract σ and the nodes i ∈ N . These steps are visualised in
Fig. 3. In step 1), i connects to σ by using the adress λσ and
bytecode ABIσ . This action only has to be performed once.
In step 2) a new round of optimization starts, and all nodes
will declare their participation to the smart contract by passing
its number i and the numbers of their parent node π(i) and
children nodes δ(i). As all nodes send this information, full
network topology will be implicitly known by the contract
without having to state it explicitly. Also, the nodes will
retrieve θ from the contract to configure the local optimization
problem. When all nodes have declared participation, the
contract will communicate to all nodes that the optimization
process may commence. When local optimization (38) is
complete, the nodes send their sets of coupling variables xl to
the smart contract in step 3) and wait for further instructions.
When all nodes submitted their coupling variables the smart
contract will execute the z-update step (39) of ADMM. When
the z-update step is complete, the recalculated global variables
are sent back to the nodes in step 4) which will then calculate
the new penalty value (40). The nodes will also calculate the
partial residual value for their subproblem and send this to
the contract in step 5). This contract then calculates the global
residual and sends this value back to the nodes in step 6). The
nodes evaluate the convergence conditions (36) and revert to
step 3) to start a new iteration if the conditions are not satisfied.

Step Step Step Step Step Step

Figure 3: A flowchart showing the interaction between the
smart contract σ and node i in the steps of the ADMM
algorithm.

V. CASE STUDY

The system is tested using measured consumption and
generation data from 23 households who are part of the East
Harbour Prosumers Community in Amsterdam [18] and a
test distribution network whose topology and parameters are
the same as the first 23 bus network described in [16]. Of
these households, 8 are prosumers with a PV system, 3 are
prosumers with a PV system and an EV, 8 are consumer
households and 3 are consumer households with an EV. We
assume that each household with EV drives 36 km each day,
which is the average daily distance travelled in the Netherlands
[19], with a driving efficiency of 5 km per kWh. This results in
an average EV daily charging demand (Eev, av) of 7.06 [kWh].
The charging scheduling input parameter ωi is different for
every EV owner, with some households allowing scheduling
during the day and others during the night. For the cost
function of the thermal generator at feeder 0, we set the values
of α = 1, β = 10 and γ = 100. For the reactive power load,
we use a random number generator where the reactive power
load is between 0 and -1 in every timeslot. It is assumed that
the households do not have access to a private connection to
the external grid.

For testing the proposed framework, generation and con-
sumption data on 21 June 2018 as an arbitrary day is used.
Python and CVXPY [20] are used to solve the local opti-
mization problems. Ganache-cli [21] is used to run a private
Ethereum blockchain network and Web3.py [22] is used to
enable communication between Python and the network. The
convergence of the algorithm is visualised in Fig. 4. The
algorithm is run for µ = 300 iterations, at which point the total
costs are 0.8 percent higher than in a centralized solution. The
total generation schedule of the feeder 0 and the scheduling
of EV charging for all households are visualised in Fig. 5, as
well as the total PV generation and the total base load. It can
be seen that the thermal generator is most active during the
peak hours in early morning and early evening, when there
is no solar generation and load is relatively high. It can also
be seen that EV charging is lowest during these times, and is
instead scheduled during the day and night.

VI. CONCLUSIONS

In this study it is shown how blockchain-smart contracts
and ADMM can be used to implement a decentralized OPF
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Figure 5: Total electricity generation and consumption sched-
ule of all housheholds on 21 June 2018.

algorithm in a LV network or a microgrid environment to
optimize electricity flows between households that possess
different varieties of DER. We have shown how the OPF
algorithm can be decomposed into local subproblems that are
solved locally by every household and how ADMM is used
to ensure consensus between the different households on the
final state of the system. Finally, it is shown how the ADMM
algorithm is implemented on a blockchain network making
use of smart contracts technology. The proposed framework
achieves the desired goal of optimization whilst providing
security from tampering and cyberattacks, as well as indepen-
dence from a central agent. Limitations arise from the fact that
the model has only been tested on a private blockchain node
in a closed environment. For a more elaborate assessment of
practical applicability in terms of speed and security, the model
could be deployed and tested on a live blockchain network.
Furthermore, this study does not assume any trading between
the different households. In future work, the usefulness of the
platform and the smart contract can be expanded by including
a trading mechanism that allows payments between households
to take place based on the quantity of electricity that is shared
with the network.
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