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Abstract—Off-chain transaction handling like the Lightning
Network (LN) is among the most promising solutions to solve the
scaling challenges in blockchain technology like Bitcoin. At the
same time, the LN faces its own challenges like transaction path
lengths, centralization of channels (hubs), channel imbalances
(depletion), etc. Here we study the effects of payment channel
fees on these various factors. To get realistic insights, we based
our study on empirical Bitcoin transaction patterns and existing
LN structure, and apply a simple form of fee structure with
only one tunable parameter, α, that is most influential on the
transaction routing paths. We assume the transactions through
the LN take the path of the lowest aggregate fees, and found as
a consequence that one cannot have short average path lengths
and low overall channel imbalances at the same time. A good
compromise is to have fees proportional to the square root of the
channel capacity, such that reasonably short path lengths and
overall balanced channel capacities can be achieved that makes
the operation of the LN more sustainable.

I. INTRODUCTION

The emerging technology of blockchain has great promises

in internationalizing many industries through mass decen-

tralization. As the first successful example, Bitcoin (BTC)

was designed as a decentralized digital currency by Satoshi

Nakamoto in 2008 [1]. The Bitcoin network (BN) operates on

a public ledger, known as the blockchain, which records every

transaction that happens in the network, and verified by a pub-

lic pool of ‘miners’. The popularity, usage and price of BTC

has skyrocketed since its inception, with growing awareness on

the benefits of blockchain technology. However, its design is

not able to meet the increasing number of transactions, which

today results in long confirmation times and high transaction

fees. Such challenge is not unique to Bitcoin, but universal for

almost all public blockchain technologies at large.

Different solutions were proposed to increase the

blockchain’s scalability [2]–[4]. One of the solutions

that have been implemented is the Lightning Network [4],

an off-chain solution that proposes moving the bulk of BTC

transactions off the blockchain ledger to a secondary network,

where users create bi-directional committed channels that

allows funds to be exchanged almost instantaneously and

with minute fees. The public blockchain will serve as the

settlement layer for opening and closing of channels, while

transactions happen within the LN. Currently, the LN is

still in its early experimental stages, with many potential

challenges ahead.

In this work, we study the feasibility of the LN in being a

global network that complements the BTC ledger, focusing on

the interplay among three factors: transaction fees, transaction

routing path lengths and channel imbalances. Transaction fee

on each channel affects the optimal path a transaction takes,

and in turn affects the imbalances of the channels on the path

taken. An ideal LN protocol would have low transaction fees,

short path lengths for transactions, and balanced channels for

sustainable operations.

To carry out the study, we first examine the empirical

features in the BN transactions, as well as the LN structure.

Then we carry out realistic simulations of BTC transactions

on LN based on these empirical features for different fee

structures on channels. Some tools from network science [5],

[6] are also employed in the study, in particular the analysis

of centrality measures on the channels and their imbalances,

and the overall resilience [7]. In the end, we propose an

optimal fee structure for LN that strikes a balance between

short transaction path and channel imbalances.

II. EMPIRICAL OBSERVATIONS OF BTC AND LIGHTNING

NETWORK

We first carry out empirical analysis on Bitcoin transaction

patterns, which will serve as the inputs to simulate realistic

transaction flows on the LN.

A. Bitcoin Network

We use Bitcoin transaction data from the open-access ELTE

Bitcoin project [8], whose raw data was retrieved directly

from the Bitcoin Core client. Due the to sheer amount of

transactions, we use only 1-day transactional data on 7 Feb

2018 and model it as a directed network. Each node in the

network is a unique BTC address and each edge represents a
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Fig. 1. (a) Complementary cumulative distribution functions (CCDF) of in
degree (kin) and out degrees (kout) of the BN. Both display heavy-tailed
power-law behavior P (k) ∼ k−γ , with γ = 2.8 and 2.4 respectively. (b)
Probability density function of the transaction sizes, x, in BTC of the BN.
Data points are log-binned. The tail above x ∼ 10−4 scales to a power-law
with exponent = 1.6.

Fig. 2. (a) Illustration of a transaction in the LN between Alice (A) and Bob
(B). Initially, both A and B commit 0.5 BTC into the channel totalling 1.0
BTC, and the channel imbalance Icap = 0. After A transferred 0.2 BTC to
B, the new channel imbalance is Icap = 0.4. (b) Illustration of transaction
routing of 0.2 BTC from A to Charlie (C) through B when A and C do not
share a direct channel.

transaction between two nodes. Although the data is only from

a single day, the network obtained consists of 814488 nodes

and 2096150 edges, which is sufficient to obtain the statistical

patterns of the transaction activities, and such patterns do

not change significantly. Later, we will simulate artificial

transactions based on the patterns extracted from the 1-day

data.

Fig. 1(a) shows the in and out degree distributions of the

BN. Here ‘out degree’ is the number of transactions a node

has sent out, and ‘in degree’ is the number of transactions a

node has received. We observe a power-law distribution that

is characteristic of scale-free networks [9]. The distribution

can be fitted to P (k) ∼ k−γ with γ = 2.8 for the in-degree

and γ = 2.4 for the out-degree, similar to that of the Internet

[6]. Fig. 1(b) shows the distribution of transaction sizes in the

BN in terms of BTC plotted as a probability density function.

Again, a power-law behavior can be observed in the tail that

scales with an exponent of 1.6.

Fig. 3. The Lightning Network on 13 June 2018. Blue dots are nodes
and black lines are channels. Width of channels are proportional to channel
capacity. The nodes on the periphery are disconnected from the network,
therefore we remove them in our simulation as they are not able to facilitate
transactions. There are 1355 nodes in the connected network and 889 nodes
in the periphery.

B. Lightning Network

The LN is a secondary layer beyond the public blockchain

of Bitcoin. It consists of ‘channels’ between pairs of Bitcoin

accounts, with each channel having a certain amount of BTC

transferred into it. The total amount committed by the two

accounts of a channel constitutes the total capacity of the

channel. Any transaction between the two accounts smaller

than the capacity can happen without going through the

blockchain, since there is sufficient amount within the channel

to facilitate the transaction.

Fig. 2(a) illustrates such a scheme in the LN. Assuming

both Alice and Bob each commit 0.5 BTC to opening a

channel, each of them initially has 0.5 BTC on their side

of the channel. If Alice wishes to send 0.2 BTC to Bob,

Alice’s balance is reduced by 0.2 BTC, while Bob’s balance

is incremented by 0.2 BTC. This implies two properties of

the LN. Firstly, transaction sizes are limited by the user’s

balances. For example, with only 0.3 BTC left in Alice’s

balance, she cannot send a transaction of more than 0.3 BTC to

Bob. Secondly, LN channels can become imbalanced should

transactions occur frequently in one direction. Should Alice

continuously pay Bob, eventually Alice empties her balance

and funds can no longer flow in the direction of Alice to Bob.

Fig. 2(b) illustrates the second important characteristic of

the LN: transaction routing. If two nodes in the LN do not

share a direct channel, transactions can still be sent by routing

via intermediate nodes. In Fig. 2(b), Alice can route 0.2 BTC
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Fig. 4. (a) Complementary cumulative distribution function of the LN. Similar
to the BN, it displays a heavy-tailed power-law behavior with γ = 2.1. (b)
Probability density function of the channel capacities, x, in the LN. The tail
beyond x ∼ 10−3 scales to a power-law with exponent = 1.7.

to Charlie through Bob despite not having a direct channel

opened with Charlie. Note that this is a simplified illustration

of the routing mechanism, and the proper implementation

requires advanced cryptographic mechanisms that are being

studied [10], [11].

Data of the LN is obtained by crawling an online LN

explorer [12]. A snapshot of the LN is taken on 13 Jun 2018

and data is retrieved from the JSON contained in the explorer.

Each node in the network represents a Lightning node, and

each edge represents a Lightning channel between two nodes.

Due to the bi-directional nature of LN channels, we model

the LN as a network where a channel is two edges in opposite

directions, and each edge has equal capacity to enable the flow

of payments with half of the channel’s total capacity.

A visualization of the real LN is shown in Fig. 3. The

visualization shows a non-negligible number of ‘Lightning

hubs’, which are nodes of large degrees that can serve as

central hubs for transaction routing. On the periphery, many

disconnected (0 degree) nodes are observed. One explanation

for these disconnected nodes is that during the testing phase

of the LN, many users run nodes for experimental purposes

without committing funds to open channels. These 0 degree

nodes thus do not contribute at all to the network dynamics,

and consequently we remove them. After the removal, the

network consists of 1355 nodes and 5592 edges.

Similar to the BN, the LN exhibits a power-law behavior

as shown in Fig. 4(a). We obtain the exponent γ = 2.1 when

fitting the distribution to the power-law function. This implies

that the LN also classifies as a scale-free network, supporting

the visual observation of the hubs in Fig. 3. The fact that

the LN’s degree distribution has exponent γ = 2.1 indicates

that it is resilient against random failures of nodes, such that

random removal of nodes would not significantly breakdown

the network [7]. This is because majority of nodes in the LN

are low degree nodes, whose removal will not significantly

affect the network connectivity. However, targeted attacks on

hubs can cause the network to quickly breakdown, with the

giant component size rapidly disintegrating. This is due to the

fact that in scale-free networks, the few high-degree nodes

hold the network in place - their removal will destroy a

large number of central links, rapidly reducing the network’s
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Fig. 5. 2D heatmap of the degree distribution of the nodes at the ends
of the edges in the BN, i.e. kout and kin are degrees of the sending and
receiving nodes of a transaction in BN. The degrees are normalized by
the maximum degree in the BN, therefore the horizontal and vertical axis
kout/kmax, kin/kmax ∈ [0, 1]. The value in each bin is the probability to
find an edge connecting two nodes with the relevant degrees.

connectivity.

In Fig. 4(b), we plot the distribution of channel capacities

in the LN. Firstly, we note that the channel capacities are

very small, with the largest being ∼ 10−1 BTC - a far cry

from the ∼ 104 BTC transactions in the BN. This behavior

is likely due to the experimental nature of the LN, such that

users are unwilling to commit large amounts of BTC for a

network that is still in testing. Secondly, the probability density

function also scales as a power-law. However, the exponent of

1.7 is smaller than that in the BN, which suggest large channel

capacities are relatively very common in the LN.

III. SIMULATION METHODOLOGY

A. Transaction sampling

There have been numerous studies on quantifying the BTC

transaction graph [13]–[16], while studies quantifying the

LN are few, if any. If the LN were to fulfil the vision of

handling the majority of BTC transactions, with the main

blockchain serving as the consensus layer for opening and

closing channels, simulating realistic BTC transactions on the

LN will provide us a first study on the feasibility of such a

proposition.

To do so, we propose a way to draw a sample of BTC

transactions from real historical data of the BN to simulate on

the LN. There are two steps to this problem: 1) determining

which two LN nodes to simulate a transaction between and 2)

determining the size of the transaction.

For the first step, we probabilistically choose two LN nodes

in accordance to the degree distributions of nodes in the BN.

Fig. 5 shows a 2D histogram of the probability distribution of

the transactions (links) for different degrees of sending node

kout and receiving node kin. Each square is binned, whose
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value at the square is the probability of finding an edge in

the BN, such that the two end nodes are of the degrees at

the respective axes. From Fig. 1(a) and Fig. 4(a), we observe

from the power-law tails that nodes in the BN have much larger

degrees than nodes in the LN. To be able to make degree com-

parisons between the two networks, we normalize all degrees

by the maximum, kmax, which guarantees k/kmax ∈ [0, 1] for

both the BN and LN. This allows us then to make a mapping

between the nodes in the BN to LN.

In the second step, we determine the transaction size based

on real BN transactions. As we have seen from Fig. 1(b) and

Fig. 4(b), transaction sizes in the BN vary up to ∼ 104 BTC,

while channel capacities in the LN only vary up to ∼ 10−1

BTC. Hence, like the first step, we normalize the transaction

sizes in Fig. 1(b) by the maximum transaction size, so that

x/xmax ∈ [0, 1]. We do the same for channel capacities in

the LN. Now that both quantities lie in the same range, a

direct comparison can be made. We can then draw normalized

transaction sizes from the probability density function of Fig.

1(b) after normalizing by xmax.

B. Simulation setup

Data available on the LN consists only of the total channel

capacities, not the exact balance at the two ends of the channel.

Hence, without loss of generality, we initialize our LN such

that every channel is equally balanced (each user has half

the total capacity). We keep track of channel balances in our

simulation as illustrated in Fig. 2. If a transaction occurs in

a channel, the channel balances of the two users are updated

accordingly.

As mentioned, routing of transactions is a defining charac-

teristic of the LN, and we allow for routing in our simulations.

The route is selected such that it is the weighted shortest path

[17], [18], where every channel in the route has sufficient

capacity to route the transaction. If no such path exists, the

transaction is taken as failed. The weighted shortest path is

defined as the lowest aggregate fees in the path, which we

define next.

C. Fee structure

It is necessary for users to pay fees to routing nodes for

routing their transactions, so as to create incentive for nodes to

maintain connectivity in the LN. Hence, fee structure charged

by the intermediate nodes will affect the route of transactions,

which in turn affect the imbalance of the channels. Here we

define the channel imbalance Icap as:

Icap =
|C1 − C2|
C1 + C2

,

where C1 and C2 are the capacities of the two users in a

channel. If a channel is equally balanced, then Icap = 0, while

a completely imbalanced channel results in Icap = 1. For

example, initially Icap = 0 for the channel between Alice

and Bob in Fig. 2(a), while Icap = 0.4 after Alice sends the

transaction to Bob.

Imbalance of Lightning channels is undesirable, as it renders

the channel unusable in a certain direction. The channel

either requires re-balancing, or be closed and re-opened by

the two users, which incurs on-chain fees. Channels with

large capacities are less likely to become imbalanced than

channels with smaller capacities as it takes more transactions

to cause an imbalance. As such, we can propose a fee structure

whereby channels with large capacities charge smaller fees.

Channels with smaller capacities charge larger fees, as the

same transaction would cause a larger imbalance for smaller

channels. A fee structure that minimizes Icap is optimal, i.e.

the channel can be rebalanced to avoid closure.

If we treat the fees as weights of the edges, we would like

large capacity channels to have smaller weights than small

capacity channels. Hence, a good choice of fee structure is to

let the weight be 1/x, where x is the channel capacity [19].

The aforementioned weighted shortest path used for routing

then has a natural interpretation: the shortest path in a route

is one that minimizes the fees incurred for the user.

It must be noted that such a fee structure might result in

paths that incur many hops, as the goal is to minimize the

weights of the path, not the hopping length. Realistically, this

is not the most ideal, as longer path lengths carry higher risks

of intermediate nodes defaulting on the transaction, meaning

higher risk of transaction failure. We would like a compromise

between minimal fees and low number of hops, and optimizing

the fee structure to achieve this is the main goal of this study.

To study the influence of the fee structure, we further let the

weight of each edge be 1/xα, where α is a tunable parameter

and α > 0 [18]. As an example, in Fig. 2(a), after Alice has

sent the 0.2 BTC to Bob, the fee for using the channel in the

A-to-B direction is 1/0.3α, while the fee for using the B-to-A

direction is 1/0.7α. We can see that regardless of α, the fee is

cheaper to send a transaction in the B-to-A direction, as this

helps to rebalance the channel. Increasing α has the effect of

favoring more hops but lower fees, while decreasing α favors

less hops but higher fees. We will determine the optimal value

of α that gives the best compromise between shortest hops and

more balanced channels.

IV. SIMULATION RESULTS

In our simulations, we sample 50000 transactions from

the BN, using the statistics obtained from Fig. 1(b) after

normalizing and Fig. 5. Every simulation step involves running

1 transaction. Dijkstra’s algorithm [17] is used to find the

weighted shortest path between the source node and target

node, with the condition that every channel in the path has

sufficient capacity to route the transaction. If no such path

exists, the transaction fails. The results for each α are averaged

over 3 simulation runs.

Fig. 6(a) shows how the mean Icap, denoted 〈Icap〉, over all

channels varies with simulation steps. We run the simulations

for different fee structures, including a scenario where routing

incurs no fees for users. Unsurprisingly, without a fee incen-

tive, the channel imbalance is the largest. For all fee structures

1/xα, a noticeable improvement in 〈Icap〉 is observed. Larger

α favors the usage of larger capacity channels, which are

more resistant to imbalance. What is interesting is that beyond
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Fig. 6. (a) Plot of the mean channel imbalance 〈Icap〉 over all channels
in the LN against the simulation steps (number of transactions) for different
fee structures determined by α. The solid black lines are fitted lines with log
functions. As α increases, the LN is more balanced, and such a trend saturates
at α = 0.5. (b) Plot of Icap against the channel betweenness centrality at the
end of the simulation. Data points are log binned. The decrease in imbalances
with increasing α similar to (a) is also observed for different centralities. Inset:
Plot of the average number of hops in the simulation against the parameter
α. As α increases, the average number of hops transactions take increases.

α = 0.5, no noticeable improvements in 〈Icap〉 is observed

as the curves become almost indistinguishable. The curves

fit to a log curve (solid lines), implying that it will take an

exponentially long time for the LN to reach a state of total

imbalance. In addition, larger α values leads to longer time of

reaching imbalance, and better sustainability of the LN without

replenishing new channels.

The inset of Fig. 6 plots the average hops in the transactions

against α. In agreement with Ref. [18], a larger α favors

longer path lengths. We now face the trade-off between two

factors: larger α minimizes fees on the LN and minimizes

〈Icap〉, but increases the routing path lengths. In light of the

results of Fig. 6, we find that α = 0.5 is a good compromise.

Increasing beyond 0.5 yields no significant decrease in 〈Icap〉,
while going below 0.5 would yield significant increase in

〈Icap〉. From our simulations, transactions hop on average 4.5

intermediate channels before reaching their target node when

α = 0.5.

As a final investigation, we study the heterogeneity of the

imbalances for different types of links, in particular links of

different shortest path betweenness centrality (BC) measures
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Fig. 7. (a) Plot of the channel imbalance Icap against the channel’s node
imbalance Ideg at the end of the simulation for α = 0.5. Data points are
binned. We see that channels with a large imbalance in the end nodes have
the largest imbalance in capacities. (b) Plot of Icap against BC for α = 0.5
with standard deviation bars. The peak has the largest standard deviation,
indicating signs of a potential phase transition. (c) The plot of Icap against
BC for two types of channels for α = 0.5: used channels (where there are
transactions in the last 10000 simulation steps) and unused channels (where
there are no transactions in the last 10000 simulation steps). Therefore, (b) is
the average of the two plots in (c).

[19]–[22]. The shortest path BC ranks channels based on how

many shortest paths of all pairs of nodes the channel lies on,

which is a very natural definition for the LN due to its routing

mechanism.

Fig. 6(b) shows imbalances for channels of different BC

at the end of the simulation run. Echoing the results of

Fig. 6(a), we find that no-fee structure results in the largest

imbalance across channels of all BC. Increasing α decreases

the imbalance, again with α = 0.5 being the saturation point

and any increase does not result in noticeable improvements.

There is a general increasing trend in Icap when BC increases

to ∼ 10−3, which is a result of channels with higher BC being

used more in routing transactions. This is followed by a peak

in Icap (for fee cases) at ∼ 10−3, before a decrease in Icap.

It is unexpected that the nodes with BC values ∼ 10−3 have

highest imbalances. In practice, it means it is the least favor-

able to open channels of intermediate BC values. This further

acts as a barrier against preferential attachment, preventing

small nodes from gaining increasing BC, possibly preventing

centralization of the LN. In addition, at α = 0.5, the channels

with the highest BC values have relatively higher imbalances.

Hence, these channels provide less favorable fees compared to

those of lower BC values. This again acts as a penalty against

hubs, possibly decreasing the extent of centralization.

To understand the general increasing trend between channel

imbalance Icap and BC of links in Fig. 6(b), we look at the
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Fig. 8. An illustration of a hub-non-hub concept in a network. The channel
with the yellow and cyan node is of high BC and Ideg . The link becomes
easily imbalanced as transactions are biased from the left to the right direction.

relation between Icap and degree imbalance Ideg defined as

Ideg =
|k1 − k2|
k1 + k2

,

where k1 and k2 are the degrees of the two nodes at the ends

of a link. As shown in Fig. 7(a), Icap increases drastically

with links of high Ideg . Due to high degree imbalance, there

is an overall imbalance of transaction directions over such

links, resulting in high channel imbalance. This effect is more

prominent for links with high BC, since they are connected

with hubs on one end with more neighbors than the node on

the other end, as illustrated in Fig. 8. For the optimal fee

structure α = 0.5, we see from Fig. 7(b) that the links with

largest Icap also have the largest standard deviation among its

channel imbalance values, suggestive of possible critical phase

transition at the peak position. From Fig. 7(c) we see that Icap
for the used channels also peaks at the same position as all

the channels, signifying that the peak is not a simple smooth

cross over or local maximum, but potentially a critical phase

transition phenomenon in physics, which could be interesting

for further research.

V. CONCLUSIONS

In this paper, we have provided a first analysis of the

network properties of the Lightning Network, and found that

like its parent the Bitcoin network, it exhibits scale-free

behavior with a power-law degree distribution. We proposed

a simple fee model for the LN and ran simulations with

transactions sampled from real-world Bitcoin transactions. We

found that three important characteristics of the LN, namely

fees, channel imbalances and routing path lengths, compete

with each other and it is impossible to optimize all three

simultaneously. Through simulations, we found a compromise

at α ∼ 0.5 for the simple fee model ∝ 1/xα, which provides

the best trade-off of the three characteristics. It is worth noting

that simplifications have been made in this study, in particular

on the routing protocols. In practice the routing protocol may

not try to find the lowest transaction fee possible, but we

assume it may not deviate too far from it. Future studies can be

focused on more realistic routing protocols as well as more

optimal network structures, in conjunction with routing fee

structures to construct more optimal Lightning Networks.
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